118
EXAMPLE: Calculate the grams per liter of silver (i) chloride ( AgCl ) in a solution that is at equilibrium with solid AgCl .

$$
\begin{aligned}
& \mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}\left(\mathrm{a}_{4}\right)+\mathrm{Cl}^{-}\left(\mathrm{a}_{4}\right) ; \mathrm{K}_{c}=1.8 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assign a variable, } \\
& \text { ' } x \text { ', to equal the } \\
& \text { change in } \\
& \text { concentration of } \\
& \text { silver(I) ion... } \\
& {\left[\mathrm{Ag}_{5}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10}} \\
& (x)(x)=1.8 \times 10^{-10} \\
& x=1.34 \times 10^{-5} ;\left[\mathrm{Ag}^{+}\right]^{\text {chloride })}=\left[\mathrm{Cl}^{-}\right]=1.34 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

The concentration of dissolved AgCl EQUALS the concentration of either silver or chloride ion (which we know)...

$$
[\mathrm{Agll}]_{\text {dissolved }}=1.34 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}} \times \frac{143.35 \mathrm{~g} \mathrm{Agll}}{\mathrm{~mol} \mathrm{AgCl}}=0.0019 \mathrm{~g} / \mathrm{L}
$$

Equivalent to a concentration of 1.9 ppm (parts per million) Equal to $\mathrm{mg} / \mathrm{L}$ for dilute aqueous solutions!

$$
\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PC} \mathrm{I}_{5}(g) \mathrm{K}_{C}=49
$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the composition of the equilibrium mixture?


Initial conditions


120


$$
\frac{x}{(0.100-x)^{2}}=49
$$

$$
x=49(0.100-x)^{2}
$$

$$
\int^{2}(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$$
x=49\left(0.0100-0.200 x+x^{2}\right)
$$

$$
x=0.49-9.8 x+49 x^{2}
$$

$$
\begin{aligned}
& x=0.49-9.8 x+4 y x \\
& 0.040 .108 x+49 x
\end{aligned}
$$

$$
0=0.49-10.8 x+49 x^{2}<\text { Quadratic form! }
$$

$$
a=49 \quad b=-10.8 \quad c=0.49
$$

$$
x=\frac{+10.8 \pm \sqrt{(-10.8)^{2}-4(49)(0.49)}}{2(49)}=\frac{10.8 \pm \sqrt{20.6}}{98}
$$


$\geq$ This value of ' $x$ ' is CHEMICALLY impossible, since it would cause the concentrations of chlorine and phosphorus trichloride to be negative!

${ }^{121}$ Species $\left\lvert\,$| Initial | $\Delta$ | Equilibrium |
| :--- | :--- | :---: |
| $\mathrm{PCl}_{3}$ | $\frac{0.400 \mathrm{mul}}{4.00 \mathrm{~L}}=0.100 \mathrm{~m}$ | $-X$ |
| $\mathrm{Cl}_{2}$ | $\frac{0.400 \mathrm{mul}}{4.00 \mathrm{~L}}=0.100 \mathrm{~m}$ | $-X$ |
| $\mathrm{PCl}_{\text {s }}$ | 0 | $0.100-x$ |$\quad X=0.0639\right.$

MOLAR CONCENTRATIONS
MOLES AT EQUILBRIUM

$$
\begin{aligned}
& {\left[\mathrm{Pl}_{3}\right]=0,100-x=0.036 \mathrm{M} \quad \times 4.00 \mathrm{~L}=0.144 \mathrm{mul} \mathrm{PCl}_{3}} \\
& {\left[\mathrm{Cl}_{2}\right]=0,100-x=0.036 \mathrm{M}} \\
& {\left[\mathrm{Pl} l_{S}\right]=x=4,00 \mathrm{~L}=0.144 \mathrm{mul} \mathrm{Cl}_{2}}
\end{aligned}
$$

Comparison of initial state and equilibrium state:

$$
\begin{array}{|cc|}
\hline 0.400 \mathrm{mul} & \mathrm{Pl}_{3} \\
0.400 & \mathrm{mul} \\
\hline 0 \mathrm{Hal} \\
\mathrm{mal} \\
\hline
\end{array}
$$

$0.144 \mathrm{mal} \mathrm{PCl}_{3}$

$$
\begin{aligned}
& 0.144 \mathrm{mal} \mathrm{Cl}_{2} \\
& 0.256 \mathrm{~mol} \mathrm{PCl}_{\mathrm{S}}
\end{aligned}
$$

${ }^{122}$ An 8.00 L reaction vessel at 3900 C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) K_{c}=0.0123
$$

$$
K_{c}=0.0123=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}
$$

To solve this, we must express all three concentrations in terms of a single variable.

| Species | $\left[I_{\text {nitial }}\right]$ | $\Delta$ | $\left[E_{\text {quill }}\right]$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}_{2}$ | $\frac{0.880 \mathrm{~mol}}{8.00 \mathrm{c}}=0.10625$ | $-x$ | $0.10625-x$ |
| $\mathrm{O}_{2}$ | $\frac{0.880 \mathrm{mll}}{8.00 \mathrm{c}}=0.1062 \mathrm{~s}$ | $-x$ | $0.10625-x$ |
| NO | 0 | $+2 x$ | $2 x$ |

We let ' $x$ ' equal the change in concentration of nitrogen gas.

Tip - try to pick 'x' to be a change in concentration of a species with a coefficient of ' 1 '...

$$
\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}=\frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123
$$

We need to solve this expression for 'x'

$$
\begin{aligned}
& \frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123 \\
& \sqrt{\frac{(2 x)^{2}}{(0,10625-x)^{2}}}=\sqrt{0.0123} \begin{array}{l}
\text { You can solve this equation with the quadratic } \\
\text { equation, or you can take the square root of } \\
\text { both sides } . . .
\end{array} \\
& \frac{2 x}{0.10625-x}=0.1109053651 \\
& 2 x=(0.1109053651)(0.10625-x) \\
& 18.03339269 x=0.10625-x \\
& 19.0339269 x=0.10625 \\
& x=0.0055822943 \\
& N_{2}: 0.10625-x=0.101 \mathrm{MN}_{2} \\
& O_{2}: 0.10625-x=0.101 \mathrm{MO}_{2} \\
& \text { NO: } 2 x=0.0112 \text { oNO } \\
& \text { Now, use 'x' to solve for the } \\
& \text { concentrations! }
\end{aligned}
$$

