A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}, P_{\text {constant }} \ldots \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{1}=3.5 \mathrm{~L} \\
& T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} \mid V_{2}=?-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K} \\
& \frac{(3.5 \mathrm{~K})}{(306.2 \mathrm{~W})}=\frac{V_{2}}{(268.2 \mathrm{~K})}, V_{2}=3.1 \mathrm{~L} \text { in freezer }
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to

$$
\begin{aligned}
& \left.\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2} P_{1}=1.00 \mathrm{arm}}{T_{2} \quad V_{1}=2.25 \mathrm{~L}} \begin{array}{l}
T_{1}=25.0^{\circ} \mathrm{L}=298.2 \mathrm{k}
\end{array} \right\rvert\, \begin{array}{l}
P_{2}=? \\
V_{2}=1.00 \mathrm{~L} \\
T_{2}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{k} \\
(298.2 \mathrm{k})
\end{array} \\
&
\end{aligned}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

* Volume of a $10^{\prime} \times 10^{\prime} \times 88^{\prime}$ room
Use the ideal gas equation to find the MOLES of gas ...

$$
P V=\underline{n^{n} R T}
$$

Find the moles of gas ... ' n ' ... and then convert the moles of gas to mass using formula weight of oxygen gas.

$$
\begin{aligned}
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=1,18 \text { atm } \\
V=22650 \mathrm{~L} \\
R=0.08206 \frac{\mathrm{~L}-\mathrm{arm}}{\mathrm{mul} \cdot \mathrm{~h}}
\end{array} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}\right. \\
& n_{0_{2}}=\frac{(1.18 \mathrm{arm})(22650 \mathrm{l})}{\left(0.08206 \frac{\mathrm{c-ccm}}{\mathrm{mul} \cdot \mathrm{k}}\right)(298.2 \mathrm{ks})}=1092.222357 \mathrm{molo} \mathrm{O}_{2} \\
& 1092.222357 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.0 \mathrm{~g}_{2}}{\mathrm{mulog}_{2}}=35000 \mathrm{~g} \mathrm{O}_{2}(35.0 \mathrm{~kg})(277 \mathrm{lb})
\end{aligned}
$$

${ }^{144}$ CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\text { aq })+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(g)+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.0 g sodium bicarbonate to moles using formula weight.
2 - Convert moles sodium bicarbonate to moles carbon dioxide using chemical equation
3 - Convert moles carbon dioxide to VOLUME using IDEAL GAS EQUATION
$84.007 \mathrm{~g} \mathrm{NHHCO}_{3}=\mathrm{mul}_{4} \mathrm{HCO}_{3}$
$2 \mathrm{~mol} \mathrm{NaHCO}_{3}=2 \mathrm{~mol} \mathrm{CO}$
2

$$
\begin{aligned}
& P V=n R T \quad n=0.2975942481 \mathrm{mulCO} \quad P=0.950 \mathrm{~atm} \\
& V=\frac{n A T}{P} \quad \begin{array}{l}
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{ch}+\mathrm{m}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}
\end{aligned}
$$

What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)
We can solve for the new volume with either the ideal gas equation or the combined

$$
\begin{aligned}
& \text { gas law... } \\
& P V=n R T, V=\frac{n R T}{p} \\
& \begin{array}{l}
R=0.08206 \frac{\text { L.alm }}{\mathrm{mol} / \mathrm{k}} \\
T=0^{\circ} \mathrm{C}=273.15 \mathrm{~W}
\end{array} \\
& V=\frac{\left(0.2975942 .481 \mathrm{mul}\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{~L} \text {.all }}{\mathrm{mol} / \mathrm{k}}\right)(273.15 \mathrm{~K})\right.}{(1 \mathrm{~atm})}=\begin{array}{l}
6.67 \mathrm{~L} \\
\operatorname{ar} 5 \mathrm{STP}
\end{array}
\end{aligned}
$$

Alternatively, we could use the combined gas law:

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \left\lvert\, \begin{array}{ll}
P_{1}=0.950 \mathrm{akm} & P_{2}=1 \mathrm{~atm} \\
V_{1}=7.67 \mathrm{~L} & V_{2}=? \\
T_{1}=298.2 \mathrm{k} & T_{2}=273.1 \mathrm{sk}
\end{array}\right. \\
& \frac{(0.950 \text { at m })(7.67 \mathrm{~L})}{(298.2 \mathrm{k})}=\frac{(1 \text { atm }) V_{2}}{(273.15 \mathrm{k})} ; V_{2}=\begin{array}{c}
6.67 \mathrm{~L} \mathrm{at} \\
57 \mathrm{p}
\end{array}
\end{aligned}
$$

