GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2} \text { True at constant temperature at constant temperature }
\end{aligned}
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1 mol gus molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text {; constr } P_{\text {so }} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{1}=3.5 \mathrm{~L} \\
& T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{k} \left\lvert\, \begin{array}{l}
\frac{3.5 \mathrm{~L}}{300.2 \mathrm{~K}}=\frac{V_{2}}{268.2 \mathrm{~K}} \\
V_{2}=3.1 \mathrm{Lin} \text { in } \\
\text { freezer }
\end{array}\right.
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C , what is the pressure of the gas in the piston?

$$
\begin{array}{ll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \left\lvert\, \begin{array}{ll}
P_{1}=1.00 \mathrm{arm} & P_{2}=? \\
V_{1}=2.25 \mathrm{~h} & V_{2}=1.00 \mathrm{~L} \\
T_{1}=25.0^{\circ} \mathrm{L}=298.2 \mathrm{~W} & T_{2}=31.0^{\circ} \mathrm{O}=304.2 \mathrm{~K} \\
\frac{(1.00 \mathrm{~atm})(2.252)}{(298.2 \mathrm{~W})}=\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{~K})}: P_{2}=2.30 \mathrm{ctm}
\end{array}\right.
\end{array}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\frac{\uparrow \mathrm{O}_{2}}{\mathrm{O}_{2}: 32.0 \mathrm{~g} \mathrm{O}_{2}=\mathrm{mul} \mathrm{O}_{2}}
$$

$$
\text { *Volume of a } 10 \text { 'x10'x8' }
$$

Use the ideal gas equation to find MOLES GAS, then use oxygen's FORMULA WEIGHT to convert from moles to mass.

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=1.18 \mathrm{mtm} \\
V=22650 \mathrm{~L} \\
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{w}^{6 m}}{\mathrm{mul} \cdot \mathrm{~W}}
\end{array} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}\right. \\
& n_{O_{2}}=\frac{(1.18 \mathrm{nrm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{a}^{6} \mathrm{~m}}{\mathrm{mul} \cdot \mathrm{~h}}\right)(298.2 \mathrm{~K})}=1092.222357 \mathrm{mul} \mathrm{O}_{2} \\
& 1092.222357 \text { mil } 0_{2} \times \frac{3200 \mathrm{O} 0_{2}}{\operatorname{mol} \mathrm{O}_{2}}=3500 \mathrm{OgO}_{2}(25.0 \mathrm{Ng})
\end{aligned}
$$

${ }^{144}$ CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{uq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?

1 - Convert 25.0 g sodium bicarbonate to moles using FORMULA WEIGHT.
2- Convert moles sodium bicarbonate to moles carbon dioxide using CHEMICAL EQUATION
3 - Convert moles carbon dioxide to VOLUME using IDEAL GAS EQUATION

$$
84.007 \mathrm{~g} \mathrm{Na}_{4} \mathrm{HCO}_{3}=\mathrm{mal} \mathrm{NaHCO}_{3} \mid 2 \mathrm{mal} \mathrm{NaHCO}_{3}=2 \mathrm{~mol} \mathrm{CO}
$$

$$
25.0 \mathrm{yNaHCO}_{3} \times \frac{\mathrm{mol} \mathrm{NaHCO}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{mul} \mathrm{CO}_{2}}{2 \mathrm{mal} \mathrm{NaHCO}}=\frac{0.2975942481}{\mathrm{mul} \mathrm{CO}_{2}}
$$

$P V=n R T$ (3) $n=0.2975942481 \mathrm{mul} C_{2} \quad R=0.08206 \frac{\text { Lam }}{\mathrm{mul} \cdot \mathrm{m}}$
$V=\frac{n R T}{P} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~W} P=0.950 \mathrm{am}$

$$
V=\frac{\left(0.2975942481 \mathrm{mul}(0.2)\left(0.08206 \frac{\text { L.amm }}{\mathrm{mul}) \cdot \mathrm{m}}\right)(298.2 \mathrm{~h})\right.}{(0.950 \mathrm{~atm})}=\begin{aligned}
& 7.67 \mathrm{~L} \text { at } \\
& 25.0^{\circ} \mathrm{C}, 0.950 \\
& \mathrm{arm}
\end{aligned}
$$

145
What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)

$$
\begin{aligned}
& \begin{array}{llll}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}, & P_{1}=0.950 \mathrm{am} \quad & P_{2}=1 \text { arm } & \begin{array}{l}
\text { We can find } \\
\text { volume uni }
\end{array} \\
T_{1}=2.67 \mathrm{~L} & V_{2}=? & \text { the combine }
\end{array} \\
& \frac{(0.950 \mathrm{arm})(7.6 \mathrm{~L})}{(298.2 \mathrm{~W})}=\frac{(1 \mathrm{arm}) V_{2}}{(273.15 \mathrm{kr})} ; V_{2}=\begin{array}{l}
6.67 \mathrm{~L} \\
\mathrm{ar} 5 \mathrm{TP}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text {... or we can use the ideal gas equation! } \\
& P V=n R T \quad P=1 a^{\prime} n \quad R=0.08206 \frac{\text { c-atm }}{\text { mol.tr }} \\
& V=\frac{n R T}{p} T=273.15 \mathrm{~K} n=0.2975942481 \mathrm{mul} \mathrm{CO} 2 \\
& V=\frac{(0.2975942481 \mathrm{mul} \mathrm{col})\left(0.08206 \frac{\text { c.atm }}{\text { molar. }}\right)(273.15 \mathrm{k})}{\left(1 \mathrm{a}^{\mathrm{l}} \mathrm{~m}\right)} \\
& =6.67 \mathrm{~L} \text { at STP }
\end{aligned}
$$

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

At $300^{\circ} \mathrm{C}$, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 15.0 grams of ammonium nitrate?

To simplify the problem, we will calculate TOTAL MOLES OF GAS instead of each gas separately.	$\mathrm{F}_{\mathrm{W}} \mathrm{NH}_{n} \mathrm{NO}_{3} 280.052 \mathrm{~g} / \mathrm{mol}$

1 - Convert 15.0 g ammonium nitrate to moles using FORMULA WEIGHT.
2 - Convert moles ammonium nitrate to TOTAL MOLES GAS using CHEMICAL EQUATION
3 - Convert TOTAL MOLES GAS to volume using IDEAL GAS EQUATION.
$80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \mid 2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}=7 \mathrm{mul} \mathrm{gas}^{(2+1+4)}$

$$
1 \mathrm{S.Og}_{\mathrm{g}}^{4} \mathrm{NO}_{3} \times \frac{\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}^{(1)}}{80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{7 \mathrm{~mol} \mathrm{gns}^{2}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}}=0.6558237146 \mathrm{~mol}
$$

$$
\begin{aligned}
& \text { (3) } V=\frac{n R T}{p} \left\lvert\, \begin{array}{l}
n=0.6558237146 \mathrm{mJl} \mathrm{gas} \quad R=0.08206 \frac{\mathrm{Lamm}}{\mathrm{mat} \mathrm{k}} \\
T=300 .{ }^{\circ} \mathrm{C}=573 \mathrm{k} P=1.00 \mathrm{at}
\end{array}\right. \\
& V=\frac{(0.6558237146 \mathrm{~mol} \operatorname{gas})\left(0.08206 \frac{\mathrm{~L}-\mathrm{arm}^{2} \mathrm{~m}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(573 \mathrm{~K})}{\left(1.00 \mathrm{a}^{\mathrm{h}} \mathrm{~m}\right)}=\begin{array}{l}
30.8 \mathrm{~L} \mathrm{at} \\
300^{\circ} \mathrm{L}, 1.00 \mathrm{abm}
\end{array}
\end{aligned}
$$

