${ }^{81}$ EXTERNAL FACTORS AFFECTING SOLUBILITY

- There are a few external factors that affect the solubility. (By external, we mean other than the chemical identity of the solute and solvent).
(1) temperature
-For gases dissolved in liquids, the solubility DECREASES as the temperature INCREASES
- This is why THERMAL POLLUTION is bad! Hot water holds less oxygen than cooler water.
- For solids dissolved in liquids, solubility USUALLY increases with temperature. This is not true for ALL solid/liquid solutions.
(2) PRESSURE
- For gases dissolved in liquids, solubility INCREASES when the partial pressure of the solute gas over the solution INCREASES.
- Consider soft drinks. They go flat after opening because the pressure of carbon dioxide over the liquid goes down.
- No significant pressure effects for solid/liquid solutions.

Some sample colligative propoerties problems ...
What is the freezing point of a 41% solution of urea in water?

$$
\left(\mathrm{WH}_{2}\right)_{2} \mathrm{CO}: \text { uses, } F W=60.062 \mathrm{~g} / \mathrm{mol}
$$

Since we've assumed a basis of 100 g solution, we can calculate the moles urea and then find $\mathrm{Cm} . .$.

$$
\begin{aligned}
& 4 \mathrm{~g} \text { greg } \times \frac{\text { mol urea }}{60062 \mathrm{guren}}=0.6826279511 \mathrm{mul} \text { urea } \\
& C_{\mathrm{m}}=\frac{\text { mol urea }}{\mathrm{Kg} \text { gater }}=\frac{0.6826279511 \mathrm{mul} \text { urea }}{0.059 \mathrm{~kg} \text { water }}=11.56996527 \mathrm{~m} \text { urea }
\end{aligned}
$$

$$
\begin{array}{ll}
\Delta T_{f} & =k_{f} \times C_{m} \\
p S 09 \\
K_{f}, w & =1.8580 \mathrm{c} / \mathrm{m} \\
T f_{1 w} & =0.000^{\circ} \mathrm{C}
\end{array} \quad C_{m}=11.56996527 \mathrm{~m} \text { urea }
$$

Find delta T :

$$
\Delta T_{F}=\left(1.858^{\circ} / \mathrm{m}\right)(11.56996527 \mathrm{~m})=21^{\circ} \mathrm{C}
$$

Find freezing temperature:

$$
T_{F}=0.000^{\circ} \mathrm{C}-21=-21^{\circ} \mathrm{C}
$$

A compound (containing $\mathrm{Mn}, \mathrm{C}, \mathrm{O}$) is $28.17 \% \mathrm{Mn}, 30.80 \% \mathrm{C}$. A solution of the compound containing 0.125 g in 5.38 g cyclohexane freezes at 5.28 C . What is the molecular formula?

To solve the problem, we need to find the MOLECULAR WEIGHT of the cpmpound, and we also must find the EMPIRICAL FORMULA of the compound (the ratio of $\mathrm{Mn}: \mathrm{C}: \mathrm{O}$).
Let's do molecular weight first.

$$
\begin{aligned}
\Delta T_{f}= & K_{f} \times C_{m} \\
p 509: & K f_{1 r y c}=20.00 \mathrm{c} / \mathrm{m} \\
& T_{f, c y c}=6.55^{\circ} \mathrm{C}
\end{aligned}
$$

$$
C_{m}=\frac{\text { mol unknown }}{\mathrm{kg} \mathrm{cyc}_{\mathrm{g}} .38 \mathrm{~g}}=0.00538 \mathrm{~kg}
$$

Find Cm :

$$
\left(6.55^{\circ} \mathrm{C}-5.28^{\circ} \mathrm{C}\right)=(20.006 / \mathrm{m}) \mathrm{Cm}_{\mathrm{m}} ; C_{m}=0.0635 \mathrm{~m} \text { untincurn }
$$

Find moles unknown:

$$
0.00538 \mathrm{hgcyc} \times \frac{0.0635 \mathrm{mul} \text { un Knur }}{\mathrm{Fg} / \mathrm{yc}}=3.4163 \times 10^{-4} \mathrm{~mol} \text { unit }
$$

So, the molecular weight is:

$$
\frac{0.125 \mathrm{~g}}{3.4163 \times 10^{-4} \mathrm{mal}}=366 \mathrm{~g} / \mathrm{mol}
$$

Molecular weight of unknown.
${ }^{85}$ Now, we need to convert the mass data given to a MOLE ratio:

$$
28.17 \% m_{n} ; 30.80 \% \mathrm{C} ; 100-28.17-30.80=41.03 \% 0
$$

Assume 100 g compound to determine the formula:

$$
\begin{aligned}
& m_{n}: 28.17 \mathrm{~g} m_{n} \times \frac{\mathrm{mol} m_{n}}{54.94 \mathrm{gmn}}=0.5127411722 \mathrm{~mol} m_{n} \rightarrow 1 \mathrm{mul} m_{n} \\
& C: 30.80 \%\left(x \frac{\operatorname{mul} \mathrm{C}}{12.01 \mathrm{~g}}=2.564529559 \mathrm{~mol} C \rightarrow 5.002 \mathrm{mulC}\right. \\
& 0: 41.03 \% \mathrm{O} \times \frac{\mathrm{mulo}}{16.00 \mathrm{go}}=2.564375 \mathrm{malo} \rightarrow 5.001 \mathrm{mulo} \\
& \begin{array}{l}
\text { To simplify the mole ratio, divide each } \\
\text { part ot the ratio by the smallest part }
\end{array} \quad \text { _ } M_{n_{0.5127}} C_{2.564} O_{2.564} \\
& \text { of the ratio ... this gives us the ratio of } \\
& \text { whole numbers we need for the formula! } \\
& m_{n}: 1 \times 54.94 \\
& C: 5 \times 12.01 \\
& 0: \frac{5 \times 16.00}{194.99 \mathrm{~g} / \mathrm{mol}} \text { For } \mathrm{MnCs}_{5} \mathrm{O}_{5} \\
& \text { Compare } 195 \mathrm{~g} / \mathrm{mol} \text { to } 366 \mathrm{~g} / \mathrm{mol} \\
& 195 \times 2=390 \ldots \text { causes do } \\
& 366 \text { thin } 195 \text { is. (or } \\
& 195 \times 3) \text {, so } \\
& \mathrm{Mn}_{2} \mathrm{C}_{10} \mathrm{O}_{10}
\end{aligned}
$$

56 grams of a sample contain 0.51 mole fraction propane and the remainder butane. What are the masses of propane and butane in the sample?

$C_{3} H_{8}, F W=44.0949 / \mathrm{mul}_{2} ; C_{4} H_{10}, F W=58.12 \mathrm{~s} / \mathrm{mol}$	
$K_{\text {now }}: X_{C_{3} H_{8}}=0.51$	want: $C_{3} \mathrm{H}_{8} \quad$ in 56 g
$X_{C_{4} H_{10}}=1-0.51=0.49$	mass $C_{4} H_{10}$

How do we get from MOLE FRACTIONS to the masses we need?

$$
\begin{aligned}
& X_{C_{3} H_{8}}=\frac{\text { mol } C_{3} H 8}{\text { tutu mules }} \left\lvert\, \begin{array}{l}
\text { Let's assume ... for now ... we have one mole of } \\
\text { mixture. (So, ignore the } 56 \text { grams for the moment...) }
\end{array}\right. \\
& \left.\operatorname{mol}_{3} \mathrm{H}_{8}=0.51 \times 1=0.8\right) \mathrm{mul}\left(3 \mathrm{H}_{8}\right. \\
& \mathrm{mul}_{4} \mathrm{CH}_{10}=0.49 \mathrm{xI}=0.49 \mathrm{mul}_{4} \mathrm{CHI}_{10} \\
& \left.g_{C_{3} H_{8}}=0.5\right)_{\operatorname{mal} C_{3} H_{8} \times \frac{44.094 \mathrm{gC}_{3} H_{8}}{m a l} \mathrm{C}_{3} \mathrm{H}_{8}}=22.48794 \mathrm{gl}_{3} H_{8} \\
& g_{C_{4}} H_{10}=0.49 \mathrm{mul}_{4} H_{10} \times \frac{58.1 \mathrm{~g}_{\mathrm{g}} C_{4} H_{10}}{\mathrm{mul} C_{4} H_{10}}=\frac{28.4) 88 \mathrm{~g} C_{4} H_{10}}{50.96624 \mathrm{~g} \mathrm{tutal}}
\end{aligned}
$$

