$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{aligned}
& \text { invert grams of bromine to moles: Need formula weight } B r_{2}=\frac{2 \times 79.90}{159.80} \\
& 159.80 \mathrm{~g} r_{2}=1 \text { mol } B r_{2}
\end{aligned}
$$

$$
25.0 \mathrm{~g} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} A 1=3 \mathrm{~mol} B_{r_{2}}$

$$
0.15645 \mathrm{~mol} B_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} \mathrm{Br}}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al} \\
& 0.1043 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{r}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \tag{1}
\end{equation*}
$$

You can solve the second part of the question using CONSERVATION OF MASS - since there's only a single product and you already know the mass of all reactants.

$$
\begin{aligned}
& 25.0 \text { y } \mathrm{Br}_{2} \quad \text { But... } \\
& +2.81 \mathrm{~g} \text { Ar } \quad \begin{array}{l}
\text { But.... } \\
+ \text {...hat would you have done to calculate the mass of aluminum }
\end{array} \\
& \text { bromide IF you had NOT been asked to calculate the mass of } \\
& \text { aluminum FIRST? } \\
& 25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \text { mol } \mathrm{Br}_{2}}{159.80 \mathrm{Br}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlBr}_{3}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.694 \mathrm{gAl} \mathrm{Br}_{3}}{1 \mathrm{~mol} \mathrm{Al} \mathrm{Br}_{3}}=27.8 \mathrm{~g}
\end{aligned}
$$

101 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLAR CONCENTRATION.

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{Na}: 2 \times 22.99 \\
& \mathrm{C}: 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \\
& \left.25.0 \text { y } \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mo}) \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S}_{3} 99 \mathrm{~g} \mathrm{ar}_{2} \mathrm{CO}}=0.2358\right) 13086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(2) 2 mol $\mathrm{HCl}=$ mol $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{mul} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{mul} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{mul} \mathrm{HCl}
$$

102 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLAR CONCENTRATION.
(3) 6.00 mol HEl $=L$

$$
0.4717426172 \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of } 6.00 \mathrm{mHCl}
$$

The problem statement asks us for a volume in MILLILITERS, so we should do a unit

$$
\begin{aligned}
& \text { conversion. } m L=10^{-3} L \\
& 0.0786 L \times \frac{m L}{10^{-3} L}=78.6 \mathrm{~mL} \mathrm{of} 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

25.0 mL of acetic acid solution requires 37.3 mL of 0.150 M sodium hydroxide for complete reaction. The equation for this reaction is:

$$
\mathrm{NaOH}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What is the molar concentration of the acetic acid?

$$
L \text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

$$
\text { L Solution } \leftarrow=25.0 \mathrm{~mL} \text { or } 0.0250 \mathrm{~L}
$$

Since we already know the volume of the acid, we'll just have to calculate the moles of acid to solve the problem. How? Convert the amount of NaOH to moles using its concentration, then relate the moles NaOH to the moles acid using the chemical .reaction...

Note: This procedure can be used for the calculations in the titration lab!

$$
\begin{aligned}
& 0.150_{\mathrm{mol}} \mathrm{NaOH}=L\left|\mathrm{~mL}=10^{-3 L}\right| \mathrm{mul} \mathrm{NaOH}=\mathrm{mulHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& 37.3 \mathrm{~mL} \times \frac{10^{-3 L}}{m L} \times \frac{0.15 \mathrm{mal} \mathrm{NaH}_{4}}{L} \times \frac{\mathrm{mulHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{mul} \mathrm{NaH}_{4}}=0.005595 \mathrm{mulHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& M=\frac{\text { mol } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\text { L Solution }}=\frac{0.005595 \mathrm{miH} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{0.02502}=0.224 \mathrm{MHC} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \underset{\text { propylene }}{42.081 \mathrm{~g} / \mathrm{mol}}+6 \mathrm{NO} \longrightarrow \underset{\substack{\text { acrylonitrile }}}{4 \mathrm{C}_{3}^{\mathrm{S}, 064} \mathrm{~g} / \mathrm{mol}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { Calculate how many grams of acrylonitrile could be obtained from } 651 \mathrm{~kg} \text { of propylene, assuming } \\
& \text { there is excess NO present. } \\
& 1 \text { - Convert } 651 \mathrm{~kg} \text { propylene to moles. Use FORMULA WEIGHT and kg -> g conversion. } \\
& 2 \text { - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION } \\
& 3 \text { - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT of acrylonitrile } \\
& 42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{6} \quad 4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \\
& 53,064 \mathrm{gC} \mathrm{CH}_{3} \mathrm{~N}=\mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \quad \mathrm{~K} y=10^{3} \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& =821000 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}
\end{aligned}
$$

105

$$
\begin{aligned}
& \text { IS 1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permangenate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION
3 - Convert moles potassium permangenate to volume. Use MOLAR CONCENTRATION.

$$
\begin{aligned}
& 151.9 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mal} \mathrm{FeSO}_{4} \quad 10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{mal} \mathrm{KMnO} \\
& 0.250 \mathrm{mul} \mathrm{KMnO}_{4}=\mathrm{L} \mid \mathrm{mL}=10^{-3} \mathrm{~L}
\end{aligned}
$$

$$
=17.7 \mathrm{mLof} 0.250 \mathrm{~m} \mathrm{KrmnO}_{4}
$$

