If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?
O.OSSS mol MCI $=\mathrm{L}$
$0.657 \mathrm{mul} \mathrm{HC} \times \frac{\mathrm{L}}{0.05 S 5 \mathrm{mulHCl}}=11.8 \mathrm{~L}$
This amount of solution is too large for typical lab-scale work. We should use a more concentrated HCl solution to get 0.657 mol HCl .

What if we used 6.00 M HCl ?
$6,00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}$

$$
0.657 \mathrm{mul} \mathrm{HC1} \times \frac{\mathrm{L}}{6.00 \mathrm{molHCl}}=\frac{0.110 \mathrm{~L}}{110 . \mathrm{mL}}
$$

110. mL is a more reasonable lab-scale volume ... we'd use this instead of the 0.0555 M ...

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

volumetric flask
We know we need 500 . mL of solution, and we also know that the concentration should be 0.500 M . From that, we can calculate the notes of sodium sulfate required and then convert that to a mass using formula weight.
$0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{So}_{4}=L\left|\mathrm{~mL}=10^{-3} \mathrm{~L}\right| 142.0 \mathrm{~S}_{\mathrm{g}} \mathrm{Nan}_{2} \mathrm{SO}_{4}=\mathrm{molNan}_{2} \mathrm{SO}_{4}$

To prepare the solution, weigh our 35.5 grams sodium sulfate into a 500 mL volumetric flask, then dilute to the mark with distilled or deionized water.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} \backslash / 2 \ldots \text { the "DILUTION EQUATION" } \\
& M_{1}=\text { molarity of concentrated solution } \\
& V_{1}=\text { volume of concentrated solution } \\
& M_{2}=\text { molarity of dilute solution } \\
& V_{2}=\text { volume of dilute solution (total vow me, nut volume af } \\
& \text { added solvent r!) }
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \quad M_{1}=0.500 M \quad M_{2}=0.333 \mathrm{M} \\
& V_{1}=? \\
& (0.500 \mathrm{~m}) V_{1}=(0.333 \mathrm{~m})(150 . \mathrm{ml}) \\
& V_{1}=99.9 \mathrm{~mL} \text { of } 0.500 \mathrm{M} \mathrm{~N}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

