Measurements

Measurements are comparisons of properties against accepted standards, called units.

ENGLISH / US SYSTEM OF UNITS:

1 foot $=12$ inches 1 yard $=3$ feet 1 mile $=1760$ yurds

$$
\text { S280 feet = } 1 \text { mile }
$$

So what's the problem?
Units in the English system do not relate to one another in any meaningful way (as they were created independently). So, to do conversions, we have to memorize lots of essentially random numbers.

Different kinds of units in English require different sets of conversions ... makes the system rather difficult to use.

English units are nonstandard and difficult to use. Solution?
THE METRIC SYSTEM

Metric Base Units:

Length	meter	m
Mass	kilogram	kg
Temperature	Kelvin	K
Time	second	s

All metric units are made up of COMBINATIONS of BASE UNITS!
*we usually treat the gram as if it's the base unit for mass!

- One meter is approximately 3.3 feet.
- One kilogram is approximately 2.2 pounds.

What
about

Metric units may be made larger or smaller by adding PREFIXES.
A few common metric prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
mali-	10^{-3}	m
micro-	10^{-6}	μ
Applying prefixes units		

MEMORIZE the common metric prefixes listed in the study guide

Applying prefixes

$$
\begin{aligned}
& 1 \angle m=1 \sum^{1}=10^{3} m(1000 m) \\
& \Lambda C m=10^{-2} m\left(\frac{1}{100} m\right)
\end{aligned}
$$

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
K=10^{3}, k \mathrm{~m}=10^{3} \mathrm{~m}
$$

By "best suited", we mean a metric unit that would

$$
107 \mathrm{~km}
$$ represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& \text { is length? } \\
& c=10^{-2} \quad c m=10^{-2} \mathrm{~m} \quad(1 / 100 \mathrm{~m})
\end{aligned}
$$

$$
8.0 \mathrm{~cm}
$$

- are units that are made up of combinations of metric base units with each other and/or with prefixes
velocity: $\frac{\text { miles }}{h_{r}} \frac{k m}{h r} \quad\left(\frac{m}{s}\right) \quad \frac{\text { length }}{\text { fime }}$
Two derived units are particularly important in general chemistry:

1) VOLUME
2) DENSITY

VOLUME

$$
\text { VOLUME }=L \times W \times H
$$

What are the units of volume in the metric system?

$$
\begin{aligned}
\text { VOLUME } & =(m) \times(m) \times(m) \\
& =m^{3} \text { "cubic meters" }
\end{aligned}
$$

Problem: The cubic meter is too large of a unit for laboratory scale work.

Solution? Scale the cubic meter down with metric prefixes...

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit For volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use millililiters (mL)

"cc"
cubic centimeter
$=$
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3} L \\
& - \text { or } \\
& 1000 m L=1 L
\end{aligned}
$$

DENSITY

- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\text { Density }=\frac{\text { mass }}{\text { Volume }}
$$

What are the metric units of DENSITY?

$$
\text { TENSTTY=} \frac{W g \longleftarrow \text { base unit of mass }}{m^{3} \leftarrow \text { simplest volume unit }}
$$

But ... the cubic meter is too large for lab-scale work.
AND ... out lab balances can only weigh about 210 grams,
so ... we need to scale down this density unit,

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \quad\left(\frac{g}{c^{3}}\right)\left(\frac{g}{c c}\right)
$$

A useful density to remember: WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$
... of a liquid

4) Subtract to find mass of liquid

$$
\begin{array}{r}
130.559 \\
-\quad 97.359 \\
\hline 33.209
\end{array}
$$

2) Fill cylinder and measure volume of liquid
volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\text { mass }=130.55 \mathrm{~g}
$$

5) Density = mass liquid / volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

11 ...of an object

1) Measure mass of object

$$
\text { mass }=9.78 \mathrm{~g}
$$

2) Partially fill cylinder with liquid, record volume.

$$
\text { volume }=25.0 \mathrm{~mL}
$$

3) Put object into cylinder, record new volume
volume $=26.6 \mathrm{~mL}$
4) Subtract to find volume of object

$$
\begin{array}{r}
26.6 \mathrm{~mL} \\
-\quad 25.0 \mathrm{~mL} \\
\hline 1.6 \mathrm{~mL}
\end{array}
$$

5) Density = mass object / volume object

$$
\begin{aligned}
\text { Density } & =\frac{9.78 \mathrm{~g}}{1.6 \mathrm{~mL}} \\
& =6.1 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.
Example

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "k ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& \frac{K g}{k L}=10^{3} \mathrm{~g} 10^{3} \mathrm{~L} \\
& \frac{K s}{k L} \begin{array}{l}
\text { Just apply the } \\
\text { prefix to the } \\
\text { base unit! }
\end{array} \\
& \begin{array}{l}
\text { K } \mathrm{s}
\end{array}
\end{aligned}
$$

How do we actually USE a conversion factor?

*
Similar to...
If $X=2$, then

$$
\frac{x}{2}=1
$$

15.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTtOM.
- Then, drag the other half of the factor to the TOP

15
Convert $14500 \underline{\underline{m g}}$ to $\mathrm{kg} \quad \mathrm{mg}=10^{-3} \mathrm{~g} \quad \mathrm{~kg}=10^{3} \mathrm{~g}$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{~kg}
$$

Convert $0.147 \mathrm{~cm}^{2}$ to m^{2}

