
¹⁹⁹ ELECTRONEGATIVITY TRENDS

- You may look up elecronegativity data in tables, but it helps to know trends!

INCREASING

(p352)

O - FLUORINE is the most electronegative element, while FRANCIUM is the least!

2 - All the METALS have low electronegativity

(3)

- HYDROGEN is similar in electronegativity to CARBON

... so C-H bonds are NONPOLAR

DESCRIBING CHEMICAL BONDING

"octet rule"

- a "rule of thumb" (NOT a scienfitic law) predicting how atoms will exchange or share electrons to form chemical compounds

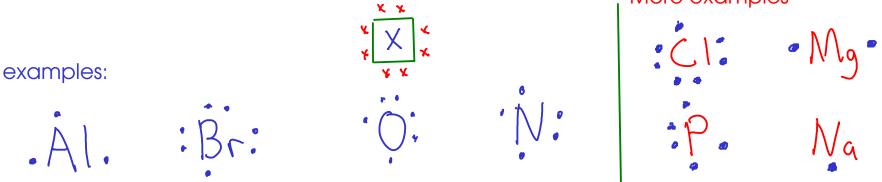
- atoms will gain, lose, or share enough electrons so that they end up with full "s" and "p" subshells in their outermost shell.

- Why "octet"? An "s" subshell can hold two electrons, while a "p" subshell can hold six. 2+6 = 8

IONIC COMPOUNDS

- When atoms react to form IONS, they GAIN or LOSE enough electrons to end up with full "s" and "p" subshells.

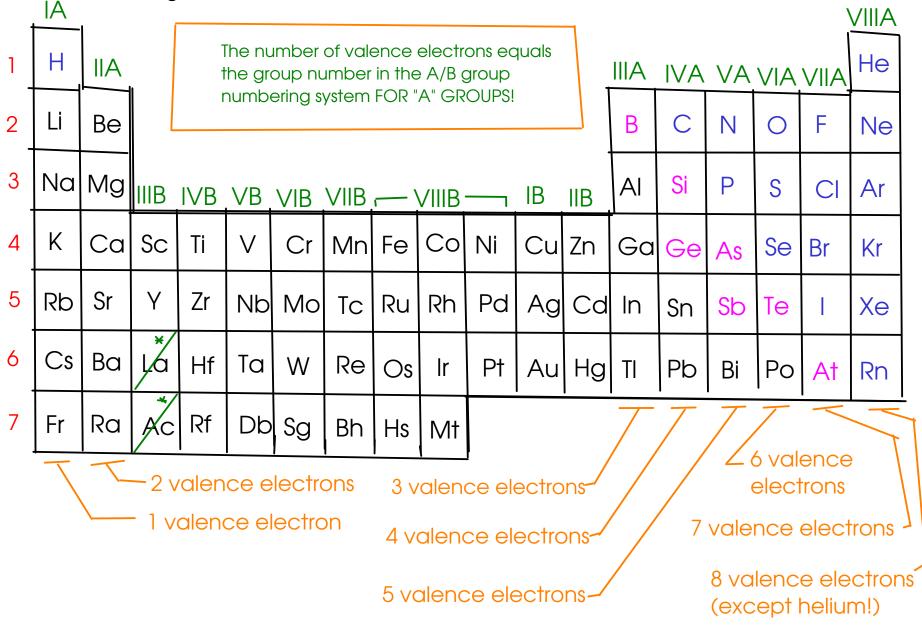
example:


$$A| + 3Br \rightarrow A|Br_{3}|^{s^{2}/r^{2}/\rho^{6}}$$

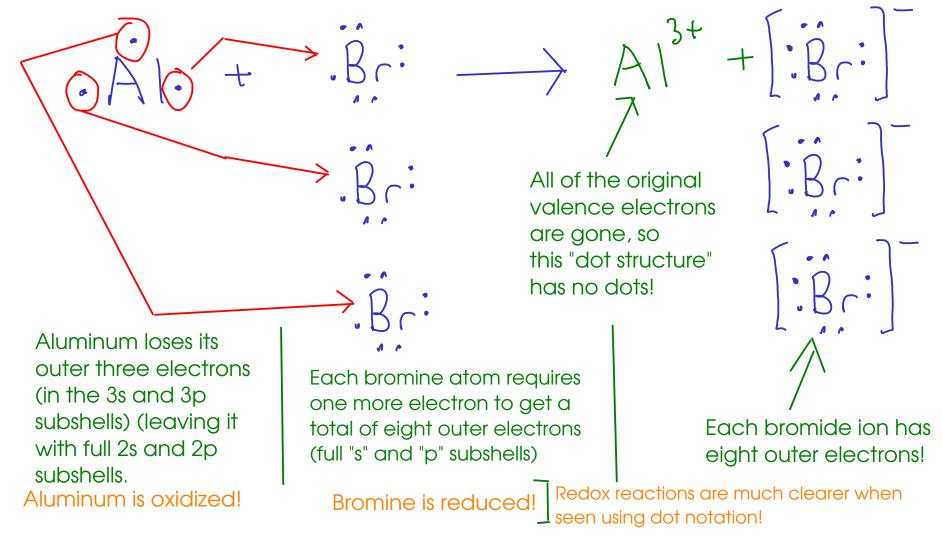
 $[Ne]_{3s^{2}}_{3s^{2}}_{3s^{2}} \rightarrow [Ar]_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{5}}$
Aluminum loses its outer $[Ar]_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{5}}$
Aluminum loses its outer $[Ar]_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{5}}$
 $Ar_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{5}}$
 $Br_{7}^{-}: [Ar]_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{6}}$
 $Br_{7}^{-}: [Ar]_{3d}^{b}_{4s^{2}}_{4s^{2}}_{4s^{6}}_{4s^{2}}_{4s^{6}}_{4s^{2}}_{4s^{6}}_{4s^{2}}_{4s^{6}}_{4s$

²⁰¹ ... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

LEWIS NOTATION / ELECTRON-DOT NOTATION


- Lewis notation represents each VALENCE electron with a DOT drawn around the atomic symbol. Since the valence shell of an atom contains only "s" and "p" electrons, the maximum number of dots drawn will be EIGHT.

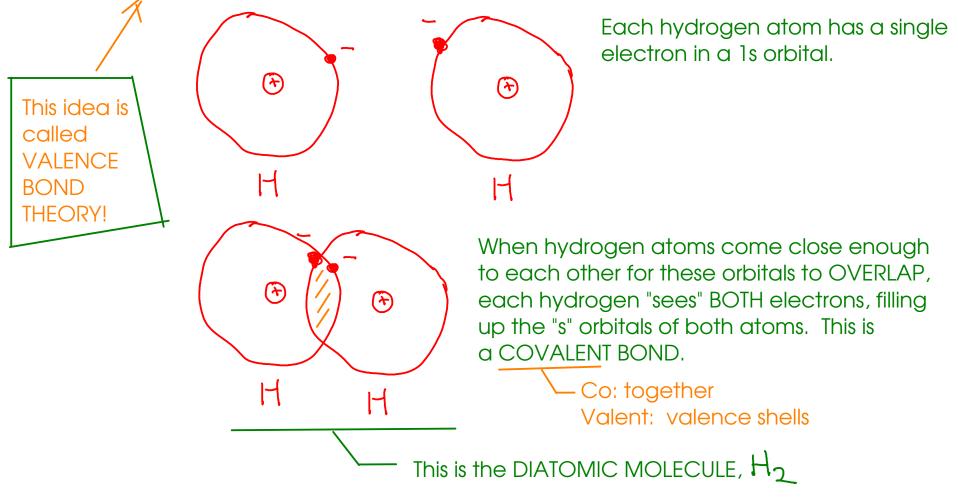
- To use electron-dot notation, put a dot for each valence electron around the atomic symbol. Put one dot on each "side" of the symbol (4 sides), then pair the dots for atoms that have more than four valence electrons.



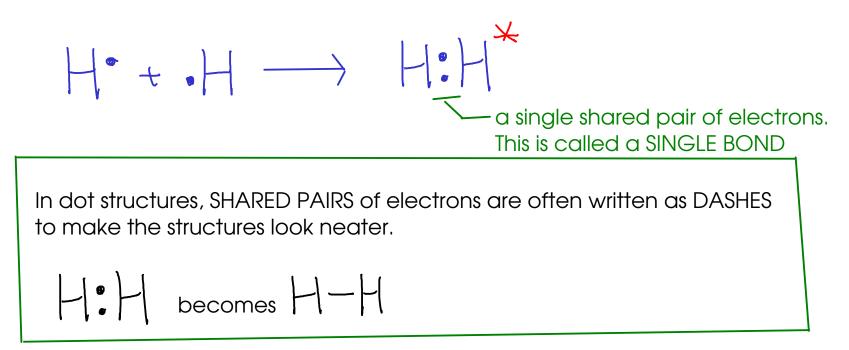
Which "side" you draw the dots on isn't important, as long as you have the right number of electrons and the right number of "pairs"

To draw a dot structure for an atom, you need to know HOW MANY valence electrons it has! You can determine this simply from the periodic table, WITHOUT writing the whole electron configuration!

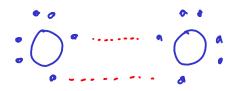
... but how do we use this to describe a reaction that produces ions? Let's look at our previous example!



... this is a bit easier to follow than looking at all those letters and numbers in the electron configurations for these elements!


MOLECULAR COMPOUNDS

- Form when atoms SHARE electrons instead of transferring them. This results in the formation of MOLECULES ... groups of atoms held together by electron-sharing.


How might atoms SHARE electrons? By coming together close enough so that their atomic ORBITALS overlap each other:

☆ Why doesn't hydrogen end up with eight electrons? Because hydrogen has only the first shell, which contains only a single "s" subshell (NO "p" subshell). This "s" subshell is full with two electrons, and that's all hydrogen needs to get. Let's look at OXYGEN ...

We know that oxygen exists in air as the diatomic molecule O_2

The oxygen atoms share TWO pairs of electrons. This is called a DOUBLE BOND

Each oxygen atom has a share in eight electrons!

A few notes on the double bond:

 For atoms to share more than one pair of electrons, they have to move
 closer to one another than they would if they were only sharing one pair of electrons. This BOND DISTANCE is measurable!

 It takes more energy to break a double bond between two atoms than it
 would to break a single bond between the same two atoms. This BOND ENERGY is also measurable! Let's look at NITROGEN ...

We know that nitrogen exists in air as the diatomic molecule $N_{\rm 2}$

The nitrogen atoms share THREE pairs of electrons. This is called a TRIPLE BOND

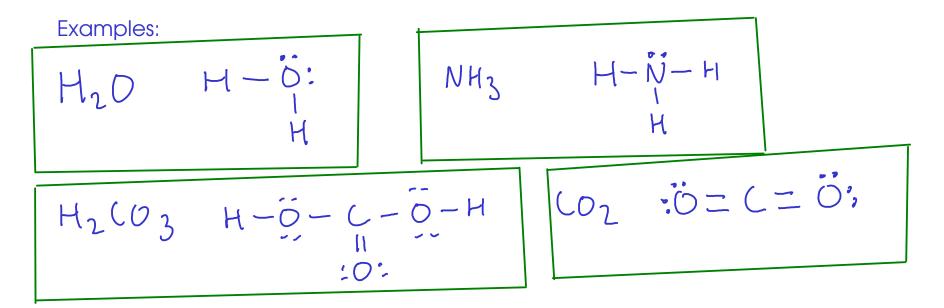
OR

Nitrogen gas is fairly inert ... it's hard to break the triple bond in nitrogen gas apart!

A few notes on the triple bond:

- For atoms to share three pairs of electrons, they have to move closer to one another than they would if they were sharing one or two pairs of electrons. Triple bonds have the shortest BOND DISTANCE of all covalent bonds.

2


- It takes more energy to break a triple bond between two atoms than it would to break either a single or double bond between the same two atoms. The triple bond has the largest BOND ENERGY of all three kinds of covalent bonds. Atoms may share one, two, or three pairs of electrons with each other.

2 Atoms will usually share enough electrons so that each atom ends up with a share in EIGHT electrons - the "octet rule"

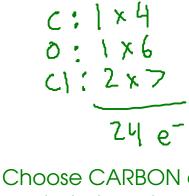
- HYDROGEN will only end up with two electrons!

- Some other atoms may end up with more or less than eight electrons. Exceptions to the octet rule are covered in Chapter 9.

NOW, how could we come up with dot structures for some more complicated (and therefore, more interesting) molecules?

²⁰⁹ DRAWING DOT STRUCTURES FOR SIMPLE MOLECULES

) Count valence electrons


Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!

- skeletal structure has all atoms connected to center with single bonds

Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.

Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

´_() (_\, __

Choose CARBON as the central atom since it needs to gain the most electrons (four)

Distribute remaining electrons. Stop when you reach 24.

We'll pick OXYGEN to form our double bond, since it needed to gain TWO more electrons - compared with chlorine which only needs to gain one, (Gaining an electrons usually involves sharing one!)

Now all atoms have a share in eight electrons!