- A shorthand way to write about electron arrangement around an atom.

$M g: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
Al: $1 s^{2} 2 s^{2} 2 \rho^{6} \frac{3 s^{2} 3 p^{1}}{1}$
Valence electrons are the ones in the outermost SHELL, not just the last subshell. Aluminum has THREE valence electrons.
wide ELECTRON CONFIGURATION AND THE PERIODIC TABLE

"s" block: last electron in these atoms is in an "s" orbital!
" P " block: last electron in these atoms is in a "p" orbital!
"d" block: last electron is these atoms is in a "d" orbital
- To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

Example: Phosphorus (P): $\left.1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}\right\} p^{3}$
Shortcut: You may use "noble gas core" notation - which starts from the previous noble gas rather than hydrogen. This is useful for big atoms.

$$
\left[\mathrm{Ne}_{e}\right] 3 s^{2} 3 \rho^{3}
$$

${ }^{172}$ EXAMPLES:
\qquad Remember - valence electrons are ALL of the electrons in the outermost SHELL! (may have more than one SUBSHELL)!
$s 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$

$\mathrm{CNe} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
$\left[\begin{array}{l}\mathrm{Ti} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2} \text { or } 1 s^{2} 2 s^{2} \\ \text { or CAr) } 3 \\ \text { Se } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{4}\end{array}\right.$
Nat er
or $\left[A_{r}\right] 3 d^{10} 4 s^{2} 4 p^{4}$
Noble gas core notation. Use the previous noble gas on the table, then add the electrons that it doesn't have to the end.
$\mathrm{Kr}\left[A_{r}\right] 3 d^{104 \delta^{2} 4 p^{6}}$

You are responsible for writing electron configurations up to $Z=18$, Argon. These are here to illustrate other points!

