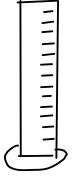
CHM 101

Today's Experiment: 2


Due today (one per table): -Pages 19-22

Notes:

- * For part A (page 16), use a HOTPLATE to heat the water instead of a bunsen burner.
- * Remember to include UNITS on all measurements on page 20-22.
- * Remember to show calculation setups when asked (pages 20-22)
- * See page 333 for conversion factors

How to measure and calculate density

... of a liquid

- 1) Measure mass of empty cylinder
- mass = 97.35 g

2) Fill cylinder and measure volume of liquid

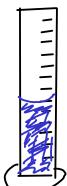
volume = 25.3 mL

3) Measure mass of filled cylinder

$$mass = 130.55 g$$

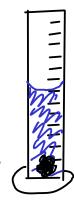
4) Subtract to find mass of liquid

5) Density = mass liquid / volume liquid


Density =
$$\frac{33.20 \text{ g}}{25.3 \text{ mL}}$$

= $\frac{1.31 \text{ g/mL}}{}$

... of an object


1) Measure mass of object

mass = 9.78 g

2) Partially fill cylinder with liquid, record volume.

volume = 25.0 mL

3) Put object into cylinder, record new volume

volume = 26.6 mL

4) Subtract to find volume of object

5) Density = mass object / volume object

Density =
$$\frac{9.78}{1.6}$$
 mL

Today's Experiment: 3

Due today (one per table): - Pages 29-32

Important SAFETY Info:

- * Wear glasses/apron for the ENTIRE exeriment!
- * 9% HzOz can burn skin on contact!
- * Dispose of My O2 in marked waste funnel.

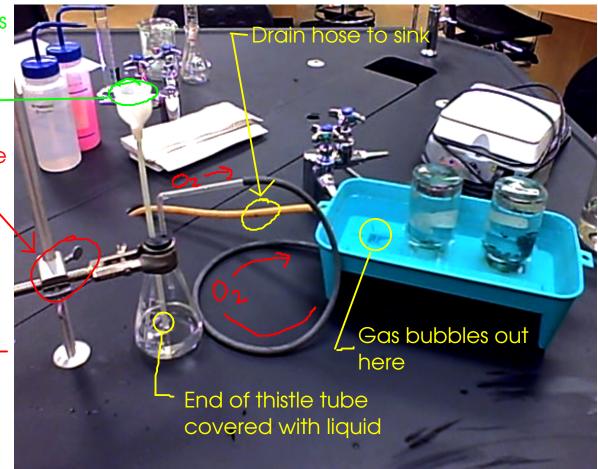
Notes on OXYGEN:

- * Element, symbol: O
- * Exists in air as

 MOLECULAR OXYGEN

 or, OXYGEN GAS,

 symbol: 02
- * MORE DENSE than air.
- * Not very soluble in WATER


Making oxygen gas:

 $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$ "Formula equation"

Collect oxygen by DOWNWARD DISPLACEMENT

H₂O₂ goes into top of thistle tube

CLAMP the flask to a stand

"Phase labels" - indicate the STATE of

"word

equation"

each substance in an equation

Oxygen has an important role in COMBUSTION

- combustion is the reaction of a substance with OXYGEN GAS to produce OXIDES

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

carbon + oxygen adioxide (an oxide)

3 Fe (s) + 2 Oz(g) -> Fe304(s)

 $\begin{array}{ccc} \text{iron} & & + & \text{oxygen} & \longrightarrow & \text{iron} \\ & & \text{gas} & & \text{oxide} \end{array}$

CHM 101

Today's Experiment: 4

Due today (one per table): - Pages 39-42

Important SAFETY Info:

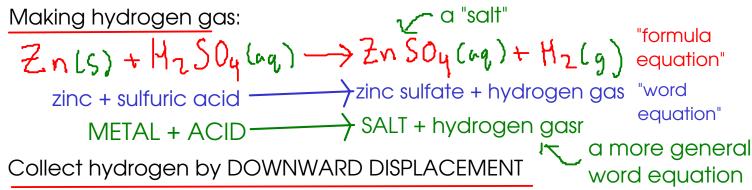
- * Wear glasses/apron for the ENTIRE exeriment!
- * ACIDS can burn skin on contact!
- * Dispose of METAL WASTE in marked waste beaker.

Notes on HYDROGEN:

- * Element, symbol : H
- * Exists in air as

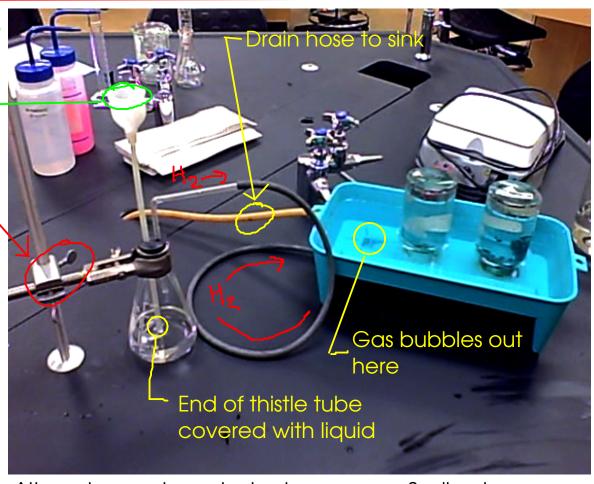
 MOLECULAR HYDROGEN

 or, HYDROGEN GAS,


 symbol: H2
- * LESS DENSE than air.
- * Not very soluble in WATER

Hydrogen is COMBUSTIBLE

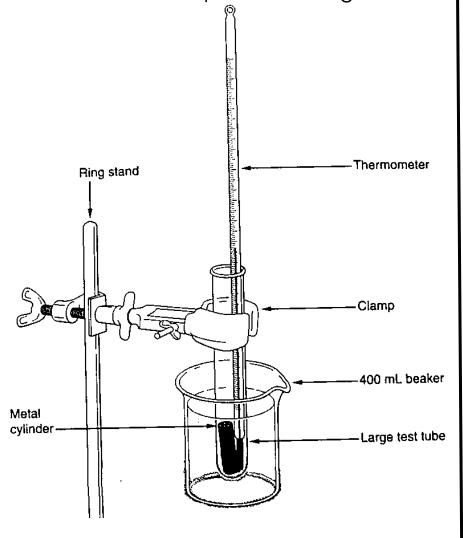
 Hydrogen reacts with OXYGEN GAS to produce the most common oxide of hydrogen - WATER.


$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

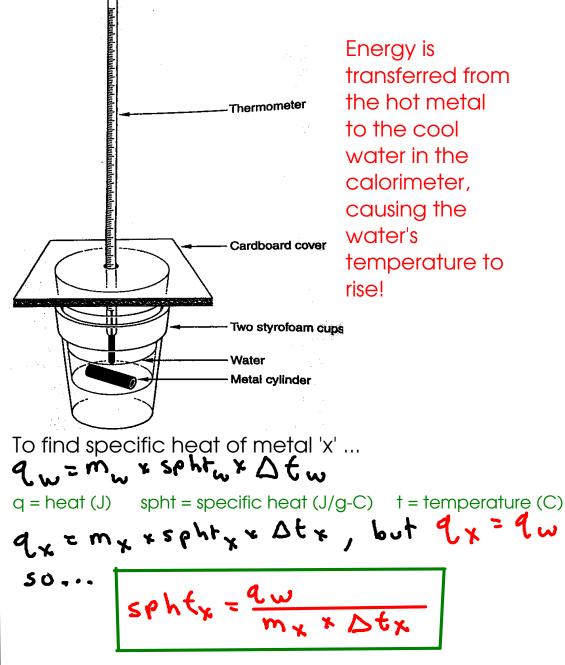
hydrogen + oxygen -> water

Hasou goes into top of thistle tube

CLAMP the flask to a stand



Alternate way to make hydrogen gas: Sodium!


Today: Expt 5 Due::p 47-49

Today, we will determine the specific heat of a metal sample.

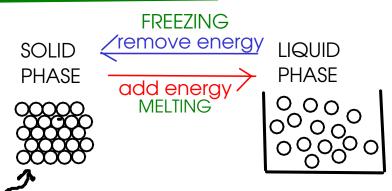
To heat the metal sample, we will use a boiling water bath, but use a test tube so that the metal sample does not get wet:

Then, we'll put the metal cylinder into a coffee-cup caporimeter and measure the temperature rise of the calorimeter's water:

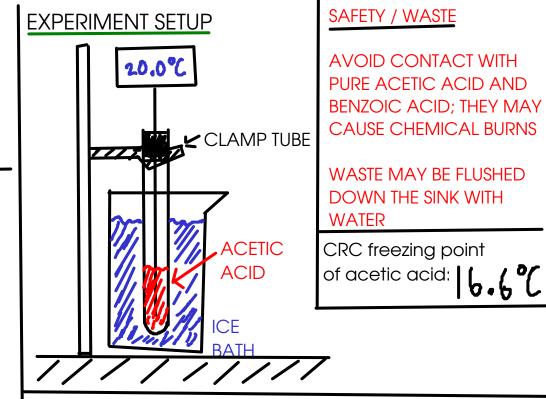
Today: Experiment 6 Due today: p57-59

Today we will measure the freezing point of pure acetic acid and see how that freezing point is affected by impurities

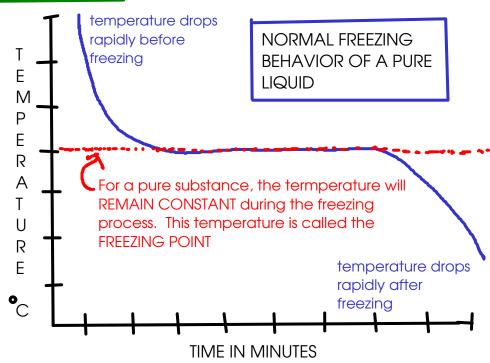
TERMS


MELTING POINT: Temperature at which a substance changes from solid to liquid

FREEZING POINT: Temperature at which a substance changes from liquid to solid


SUPERCOOLED: A substance that exists as a liquid at a temperature below its freezing point. An unstable state.

FREEZING POINT DEPRESSION: The lowering of freezing point (relative to pure compound) caused by the presence of an impurity.


THE FREEZING PROCESS

The presence of an IMPURITY slows the formation of solid crystals, affecting the freezing point!

SAMPLE PLOT

