${ }^{146}$ van der Waal equation

- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T \text { Ideal gas equation } \\
& \left.\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T\right] \begin{array}{l}
\text { van der Wails } \\
\text { equation }
\end{array} \\
& \text { attempts to account for molecular size }
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. 1208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0.08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
${ }^{147} 250 \overline{0} \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500 L chlorine gas to moles, using IDEAL GAS EQUATION
2 - Convert moles chlorine gas to moles HCl using CHEMICAL EQUATION
3 - Convert moles HCl to mass using FORMULA WEIGHT.

$$
\begin{aligned}
& \text { (1) } \\
& \begin{array}{l|l}
P V & =n R T \\
n & P=1,00 \mathrm{adm} \quad R=0.08206 \frac{\mathrm{~L} \text {-aam }}{\mathrm{mol} \cdot \mathrm{~K}}, ~
\end{array} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=2500 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{\mathrm{Cl}_{2}}=\frac{(1,00 \mathrm{adm})(25 \mathrm{ool})}{\left(0.08206 \frac{\mathrm{~L} \text { alma }}{\mathrm{mol} \cdot \mathrm{~K})}(298.2 \mathrm{~K})\right.}=102.1646983 \mathrm{~mol} \mathrm{Cl} 2 \\
& \begin{array}{l|l|l|l|}
\hline \operatorname{mol}\left(\mathrm{I}_{2}=2 \mathrm{~mol} \mathrm{HCl}\right. & 36.458 \mathrm{gHCl}=\mathrm{mul} \mathrm{HCl} & \mathrm{Kg}=10^{3} \mathrm{~g} \\
\text { (2) }
\end{array} \\
& 102.1646983 \mathrm{molCl} 2 \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\operatorname{mol~Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{Kg}}{10^{3} \mathrm{~g}}=7.4 \mathrm{~K} \mathrm{Kg} \mathrm{HCl}
\end{aligned}
$$

Calculate the mass of $2265_{50} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.
$\uparrow \mathrm{O}_{2}$
*Volume of a $10^{\prime} \times 10^{\prime} \times 8$ ' room

$$
P V=n R T
$$

1 - Convert the volume of gas to moles using moles using IDEAL GAS EQUATION
2 - Convert moles gas to mass using FORMULA WEIGHT

$$
\begin{aligned}
& \begin{array}{l|l}
n_{O_{2}} & =\frac{P U}{R T} \left\lvert\, \begin{array}{ll}
P=1.18 \mathrm{~atm} & R=0.08206 \frac{\mathrm{~L} \text {-atm }}{\text { mol } \mathrm{K}} \\
V=22650 \mathrm{~L} & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~W}
\end{array}\right.
\end{array} \\
& n_{O_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm})}{\mathrm{mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~W})}=1092.222357 \mathrm{~mol}_{\mathrm{O}} \\
& \mathrm{O}_{2}: 32.00 \mathrm{~g} \mathrm{O}_{2}=\mathrm{mul} \mathrm{O}_{2} \\
& 1092.222357 \mathrm{mulO}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{mul} \mathrm{O}}=35000 \mathrm{~g} \mathrm{O}_{2} \sim 7.0 \mathrm{~kg}
\end{aligned}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

We need to find M of HCl :

$$
M_{H C l}=\frac{\mathrm{mol} \mathrm{HCl}}{L \text { solution }} \Leftarrow 48.90 \mathrm{~mL}=0.04890 \mathrm{~L}
$$

1 - Convert 125.0 mL of carbon dioxide gas to moles using IDEAL GAS EQUATION
2 - Convert moles carbon dioxide to moles HCl using CHEMICAL EQUATION
3 - Calculate molarity of HCl by dividing moles $\mathrm{HCl} /$ volume solution
(1)

$$
\begin{equation*}
2 \operatorname{mol} \mathrm{HCl}=\operatorname{mol} \mathrm{CO}_{2} \tag{2}
\end{equation*}
$$

$$
0.0049866019 \mathrm{mul}_{2} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{molCO}} 20.0099732038 \mathrm{mul} \mathrm{HCl}
$$

(3) $\mathrm{M}_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{L_{\text {solution }}}=\frac{0.0099732038 \mathrm{mul} \mathrm{HCl}}{0.04890 \mathrm{~L}}=0.204 \mathrm{M} \mathrm{HCl}$

$$
\begin{aligned}
& n=\frac{P U}{R T} \\
& R=0.08206 \frac{\text { L-arm }}{\text { mulch }} \\
& n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L}-\mathrm{arm}}{\mathrm{mul} \cdot \mathrm{~m}}\right)(290,2 \mathrm{~L})}=0.0049866019 \mathrm{mul} \mathrm{cog}_{2}
\end{aligned}
$$

${ }^{150}$ A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{3}}{T_{2}} \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2} \text { since }}{T_{2} \text { pressure is is }} \quad \begin{array}{l}
V_{1}=3.8 \mathrm{~L} \\
T_{1}=27.0{ }^{\circ} \mathrm{C}=300.2 \mathrm{~K}
\end{array} \\
& \frac{3.5 L}{300.2 K}=\frac{V_{2}}{268.26} \\
& V_{2}=? L \\
& T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K} \\
& V_{2}=3.1 L \text { in freezer }
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C , what is the pressure of the gas in the piston?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \left\lvert\, \begin{array}{l}
P_{1}=1.00 \mathrm{arm} \quad V_{1}=2.2 \mathrm{SL} \\
P_{2}=? \quad V_{2}=1.00 \mathrm{~L} \quad T_{2}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{~K} \\
\frac{(1.00 \mathrm{arm})(2.2 \mathrm{SL})}{(298.2 \mathrm{~K})}=\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{~K})} ; P_{2}=2.30 \mathrm{akm}
\end{array}\right.
\end{aligned}
$$

