$$
4 \underset{\substack{\text { propylene }}}{42.081 \mathrm{~g} \mid \mathrm{mol}}+6 \mathrm{NO} \longrightarrow \underset{\substack{\mathrm{H}_{6} \\ \text { procrylonitrile }}}{\mathrm{S}_{3}^{33,0649} \mathrm{H}_{\text {maul }}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.
1 - Convert 651 kg propylene to moles. Use FORMULA WEIGHT (and kg->g conversion)
2 - Convert moles propylene to moles acrylonitrile using CHEMICAL EQUATION
3 - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT

$$
\begin{aligned}
& 42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6} \quad 4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \\
& 53.064 \mathrm{~g} \mathrm{C} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \quad \mathrm{k}_{\mathrm{y}}=1 \mathrm{o}_{\mathrm{g}}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =821000 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}(821 \mathrm{~kg})
\end{aligned}
$$

$$
\begin{aligned}
10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
& +8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT
2 - Convert moles iron(II) sulfate to moles potassium permanganate. Use CHEMICAL EQUATION
3 - Convert moles potassium permangenate to volume. Use MOLAR CONCENTRATION

$$
\begin{aligned}
& 151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4} \mid 1 \mathrm{~mol}^{\mathrm{MeSO}} \mathrm{~F}_{4}=2 \mathrm{~mol} \mathrm{hrmaO}_{4} \\
& 0,250 \mathrm{~mol} \mathrm{KmnO}_{y}: \mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
& =17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{M} \mathrm{KmnO}_{4}
\end{aligned}
$$

