GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2} \text { True at constant temperature at constant temperature }
\end{aligned}
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1 mol gus molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \ldots \text { since } P=\text { constant, }, \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
V_{1}=3 . S \mathrm{~L} \\
T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} \quad V_{2}=? \\
\end{gathered}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C , what is the pressure of the gas in the piston?

$$
\begin{aligned}
& \text { 31.0 C what is the pressure of the gas in the piston? } \\
& \begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=1.00 \mathrm{arm} P_{2}=? \\
& V_{1}=2.25 \mathrm{~L} \\
& T_{1}=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} V_{2}=1.00 \mathrm{~L} \\
& \frac{(1.00 \mathrm{utm})(2.25 \mathrm{~L})}{(298.2 \mathrm{~K})}=\frac{T_{2}}{}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{~W} \\
&(304.2 \mathrm{~K}) P_{2}=2.30 \mathrm{~atm}
\end{aligned}
\end{aligned}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\begin{aligned}
& \frac{\mathrm{Q} \mathrm{O}_{2}}{\mathrm{O}_{2}: 32.00 \mathrm{~g} \mathrm{O}_{2}=\text { maul }} 2
\end{aligned} \quad \begin{aligned}
& * \text { Volume of a 10'x10'x8' } \\
& \text { room }
\end{aligned}
$$

Use the ideal gas equation, but it has no mass term. What will we calculate?

$$
P V=n R T
$$

Find the number of moles, $\mathrm{n} . .$. then use the formula weight of oxygen gas to find the mass.

$$
\begin{aligned}
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=1.18 \mathrm{~atm} \quad R=0.08206 \frac{\text { Lat }}{\text { moloch }} \\
V=22650 \mathrm{~L} \\
T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}\right. \\
& \left.n_{O_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\text { molotr }}\right)(298.2 \mathrm{~K})}=1092.22235\right) \mathrm{mul} \mathrm{O}_{2} \\
& 1092.22235) \mathrm{mul}_{2} \times \frac{32.00 \mathrm{gO}_{2}}{\mathrm{moloz}}=35000 \mathrm{gO}\left(\begin{array}{l}
(35.0 \mathrm{tg}) \\
(\sim 7716)
\end{array}\right.
\end{aligned}
$$

