MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution <dissolved substance

$$
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOUUTION }}
$$

6.0 M HCl solution: $\frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have? $\quad 6.0 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{mul} \mathrm{HCl}}{L}=1.5 \mathrm{molHCl}
$$

*See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162 -9th edition) (p 156-164-10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
0.0555 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{11.8 \mathrm{~L}}{11800 \mathrm{~mL}}
$$

This is too large of a volume for lab-scale work. We probably don't even have this much of the solution 11800 mL available!

What if we used 6.00 M HCl ?

$$
6,00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 . \mathrm{mL}}
$$

A more reasonable lab volume. We'd probably use this (as opposed to the solution above) to get our 0.657 mol HCl

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

volumetric flask
We know that we need 500 mL of solution, and we know that the concentration is supposed to be 0.500 M . We need to figure out how many moles of sodium sulfate should be in that 500 mL solution. If we convert that number of moles to mass, well know how much sodium sulfate to weight out!

$$
\begin{aligned}
& 0.800 \mathrm{mul} \mathrm{Na}_{2} \mathrm{So}_{4}=\mathrm{L}\left|\mathrm{~mL}=10^{-3} \mathrm{~L}\right| 142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{So}_{4}=\mathrm{mol} \mathrm{Na} \mathrm{NO}_{4}
\end{aligned}
$$

So, to prepare this solution, we would add 35.5 grams of sodium sulfate to a 500 mL volumetric flask and dilute to the mark with distilled water.

To prepare a solution of a given molarity, you generally have two options:
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)

- "stock solution"
(2) Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times V
$$

$$
\frac{m u l}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)

$$
\begin{aligned}
& M_{1} V_{1}= \\
& \begin{array}{l}
\text { before } \\
\text { diution }
\end{array} \\
& \begin{array}{l}
\text { after } \\
\text { dilution }
\end{array}
\end{aligned}
$$

97

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} \backslash / 2 \quad \ldots \text { the "DILUTION EQUATION" } \\
& M_{1}=\text { molarity of concentrated solution } \\
& V_{1}=\text { volume of concentrated solution } \\
& M_{2}=\text { molarity of dilute solution } \\
& V_{2}=\text { volume of dilute solution (total vow me, nut volume af } \\
& \text { added solvent r!) }
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
M_{1} V_{1}=M_{2} V_{2} \quad M_{1} & \left.=0.500 m \left\lvert\, \begin{array}{l}
M_{2}
\end{array}\right.\right)=0.333 \mathrm{~m} \\
V_{1} & =? \\
(0.500 m) \times V_{1} & =(0.333 \mathrm{~m})(150 . \mathrm{mL})
\end{aligned}
$$

So, to make the solution, take

$$
V_{1}=99.9 \mathrm{~mL} \text { of } 0.500 \mathrm{~m} \mathrm{~N}_{\mathrm{n}_{2}} \mathrm{Su}_{4}
$$ 99.9 mL of 0.500 M sodium sulfate and add enough distilled water to make $150 . \mathrm{mL}$ of solution.

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{aligned}
& \text { invert grams of bromine to moles: Need formula weight } B r_{2}=\frac{2 \times 79.90}{159.80} \\
& 159.80 \mathrm{~g} r_{2}=1 \text { mol } B r_{2}
\end{aligned}
$$

$$
25.0 \mathrm{~g} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} A 1=3 \mathrm{~mol} B_{r_{2}}$

$$
0.15645 \mathrm{~mol} B_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} \mathrm{Br}}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al} \\
& 0.1043 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{r}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \tag{1}
\end{equation*}
$$

You can solve the second part of the question using CONSERVATION OF MASS - since there's only a single product and you already know the mass of all reactants.

$$
\begin{aligned}
& 25.0 \text { y } \mathrm{Br}_{2} \quad \text { But... } \\
& +2.81 \mathrm{~g} \text { Ar } \quad \begin{array}{l}
\text { But.... } \\
+ \text {...hat would you have done to calculate the mass of aluminum }
\end{array} \\
& \text { bromide IF you had NOT been asked to calculate the mass of } \\
& \text { aluminum FIRST? } \\
& 25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \text { mol } \mathrm{Br}_{2}}{159.80 \mathrm{Br}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlBr}_{3}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.694 \mathrm{gAl} \mathrm{Br}_{3}}{1 \mathrm{~mol} \mathrm{Al} \mathrm{Br}_{3}}=27.8 \mathrm{~g}
\end{aligned}
$$

${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles HCl . Use chemical equation.
3 - Convert moles HCl to volume. Use MOLAR CONCENTRATION ($6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}$)

$$
\begin{aligned}
& \text { (1) } \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}_{\mathrm{a}}: 2 \times 22.99 \\
& 0: \frac{3 \times 16.00}{105.99} \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 25.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{aO}_{3}
\end{aligned}
$$

(2) $2 \mathrm{mulHCl}=\mathrm{molNan}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Nal}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{mul} \mathrm{HCl}
$$

102 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 H \mathrm{Cl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NuC}_{1}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g sodium carbonate to moles. Use formula weight.
2 - Convert moles sodium carbonate to moles HCl . Use chemical equation.
3 - Convert moles HCl to volume. Use MOLAR CONCENTRATION ($6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L}$)
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \mid \mathrm{mL}=10^{-3} \mathrm{~L}$

$$
\begin{aligned}
& 0.4717426172 \text { mut } H C 1 \times \frac{L}{6.00 \mathrm{mul} \mathrm{HCl}} \times \frac{m L}{10^{-3} \mathrm{~L}}=\begin{array}{|c|}
\hline 8.6 \mathrm{~mL} \\
06.06 \mathrm{~m} \mathrm{HCl}
\end{array} \\
& \begin{array}{l}
\text { We used this factor to convert } \mathrm{L} \text { of solution to } \\
\mathrm{mL}, \text { since the problem specifically asks us for } \\
\mathrm{mL} \text { ! }
\end{array}
\end{aligned}
$$

