MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release \vec{H}^{T} ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

() <u>BINARY ACIDS</u>

Usually from Group VIIA

- contain hydrogen and one other element

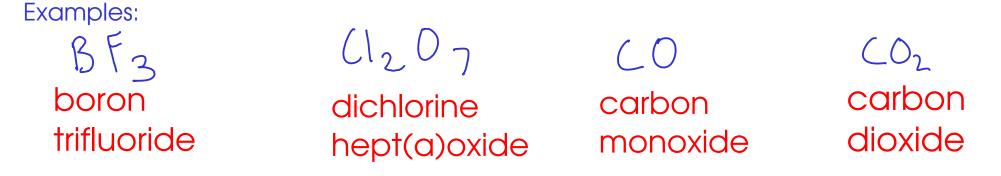
OXYACIDS

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT


- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

こ/ <u>SECOND ELEMENT</u>

- Add a <u>GREEK PREFIX</u> to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES! THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

BINARY MOLECULAR COMPOUNDS

*Note: metalloids like boron behave chemically like nonmetals do.

) BINARY ACIDS

- named after the element (other than hydrogen) they contain
- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

Four common binary acids

- H F ; hydrofluoric acid * dissolves glass!
- HCL (hydrochloric acid^{*} most common binary acid!

HBr: hydrobromic acid

HJ: hydroiodic acid

ACIDS

(i) OXYACIDS

75

- Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS

- These acids are not true ionic compounds, but they interact with water to PRODUCE ions!

- named based on the polyatomic ion they contain, with an ending change:

1) - ions ending in -ATE form acids ending in -IC

 \mathfrak{L} - ions ending in -ITE form acids ending in -OUS

sulfATE	/phosphATE	sulfITE	nitrate
H2 SOY	H3PO4	H_2SO_3	HNO3
sulfuric acid	phosphoric	sulfurous	nitric
	acid	acid	acid

OXYACID EXAMPLES

acetic acid nitrous acid bused on ACETATE based on NITRITE H+ (2H202-HC2H202 0γ based on (ARBONATE the number of hydrogen atoms at the beginning of the formula equal $\frac{1}{2}$ carboni<u>c</u> acid the beginning of the formula equals the charge of the anion the acid is 60,2based on! $h_{2}(0_{2}$

- You need to be able to tell, by looking at a name OR a formula, what kind of compound you are working with!

DON'T GET THE NAMING SYSTEMS MIXED UP! EACH KIND OF COMPOUND IS NAMED WITH ITS OWN SYSTEM!

FROM A CHEMICAL NAME

- If the name has a Roman numeral, the name of a metal, or "ammonium", the compound is likely IONIC

- If the name has a Greek prefix AND the prefix is NOT in front of the word "hydrate", the compound is <u>BINARY MOLECULAR</u>

- If the name contains the word "acid":

... and starts with "hydro-", then the compound is a BINARY ACID

... and does not start with "hydro-", the compound is an OXYACID

FROM A CHEMICAL FORMULA

- if the formula contains a metal or the NH $\frac{+}{4}$ ion, it is likely I<u>ONIC</u>

 H_2O H_2O_2 - If the formula starts with H and is not either water or hydrogen peroxide, the compound is likely an ACID. Which kind?

- BINARY ACIDS contain only two elements

<u>OXYACIDS</u> contains oxygen

- If the formula contains only nonmetals (and is not an ammonium compound or an acid), the compound is likely MOLECULAR

Examples:

 $P(1_{3}: BINARY MOLECULAR \\ Name: phosphorus trichloride \\ NH_{4} CI: DNIC (ammonium ion) \\ Name: ammonium chloride \\ Name: ammonium chloride \\ Name: ammonium chloride \\ NH_{4} CI: DNIC (ammonium ion) \\ Name: ammonium chloride \\ Name: ammonium chloride \\ NH_{4} CI: DNIC (ammonium ion) \\ Name: ammonium chloride \\ NH_{4} CI: DNIC (ammonium ion) \\ Name: ammonium chloride \\ NH_{4} CI: DNIC (ammonium ion) \\ Name: ammonium chloride \\ NH_{4} CI: DNIC (ammonium ion) \\ NH_{4} CI: DNIC (ammonium io$ $H_{3}PO_{H}$: OXYACID (hydrogen, phosphate) $Fe(OH)_{2}$: IONIC (starts with a metal) Name: phosphoric acid

CHEMICAL EQUATIONS

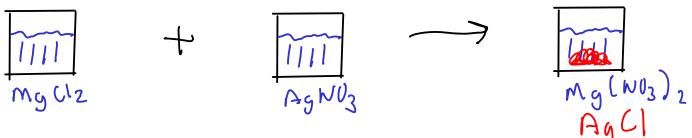
- are the "recipes" in chemistry

- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$\operatorname{MgCl}_{2}(\operatorname{aq}) + \operatorname{MgNO}_{3}(\operatorname{aq}) \xrightarrow{\vee} 2\operatorname{AgCl}(\operatorname{s}) + \operatorname{Mg(NO}_{3})_{2}(\operatorname{aq})$$

"vialde"

REACTANTS - materials that are needed fot a reaction


PRODUCTS - materials that are formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others

PHASE LABELS - give the physical state of a substance:

- (s) -solid
- (I) liquid
- (g) gas

(aq) - aqueous. In other words, dissolved in water

CHEMICAL EQUATIONS $2M_{g}(s) + O_{2}(g) \xrightarrow{\Delta} 2M_{g}O(s)$

REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

- \triangle apply heat
- catalysts substances that will help reaction proceed faster
- other conditions, such as required temperatures

- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions