$$\frac{85000. \text{ mm}}{5} \text{ decimal point}$$

$$\frac{76.070 \, \text{g}}{5} = \frac{10.001 \, \text{g}}{5} = \frac{85000 \, \text{mm}}{5} = \frac{11 \, \text{mm}}{5} = 0.001030 \, \text{kg} = \frac{10.000001 \, \text{kg}}{4}$$

$$0.10s \pm 0.01$$

 $\frac{156.0002}{7}$ g ± 0,000 lg $\frac{0.10s}{2}$ ± 0,015 $\frac{170000000}{2}$ mg ± 1000000 mg

Calculations with measurements

When you calculate something using measured numbers, you should try to make sure the ANSWER reflects the quality of the data used to make the calculation.

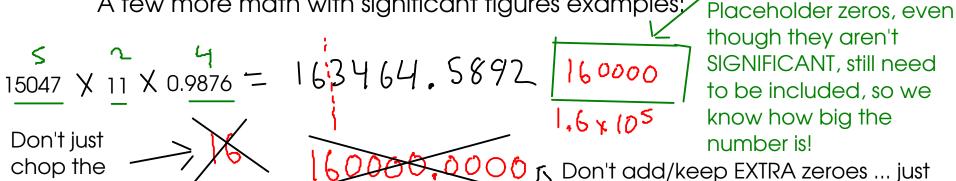
An ANSWER is only as good as the POOREST measurement that went into finding that answer!

How should we report this answer? How much uncertainty is in this answer?

- ★ If you add an uncertain number to either a certain or an uncertain number, then the result is uncertain!
- ★ If you add certain numbers together, the result is certain!

For addition and subtraction, round FINAL ANSWERS to the same number of decimal places as the measurement with the fewest decimal places. This will give an answer that indicates the proper amount of uncertainty.

For multiplication and division, round FINAL ANSWERS to the same number of SIGNIFICANT FIGURES as the measurement with the fewest SIGNIFICANT FIGURES!


$$\frac{4}{15.62} \times 0.0667 \times \frac{3}{35.0} = 36.46489$$

How should we report this answer?

How should we report this answer?

'We round this one to TWO significant figures. But the beginning zeroes are not significant. The first significant figure in this number is the first "8"

A few more math with significant figures examples;

OOO 5 Don't add/keep EXTRA zeroes ... just number! enough to show where the decimal goes!

Addition:

DENSITY CALCULATION

To improve the precision of this density measurement, we would have to improve the precision of the volume measurement - which has only two significant figures.

(If we improve the precision of the mass measurement, it won't affect the precision of the answer at all!)

Exact Numbers

- Some numbers do not have any uncertainty. In other words, they weren't measured!
 - 1) Numbers that were determined by COUNTING!

2) Numbers that arise from DEFINITIONS, often involving relationships between units

- Treat exact numbers as if they have INFINITE significant figures or decimal places!

Example

You'll need to round the answer to the right number of significant figures! Convert 4.45 m to in, assuming that 2.54 cm = 1 in

2.54 cm
$$= 10^{-2} \text{m}$$

H, LISMX $\times \frac{\text{cm}}{10^{-2} \text{m}} \times \frac{\text{in}}{2.54 \text{ cm}} = 175.1968504 \text{ in}$
 $= 175 \text{ in}$

Usually, in unit conversions the answer will have the same number of significant figures as the original measurement did.

EXCEPTION: Temperature conversions, since these often involve ADDTION (different rule!)

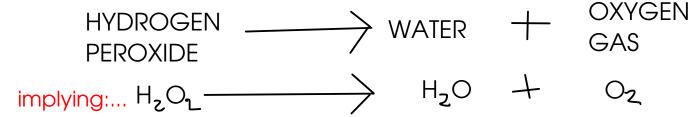
A note on rounding: If possible, try to round only at the END of a multiple-step calculations. Avoid rounding intermediate numbers if possible, since extra rounding introduces ERROR into your calculations.

DALTON'S ATOMIC THEORY

- 1808: Publication of Dalton's "A New System of Chemical Philosophy", which contained the atomic theory
- Dalton's theory attempted to explain two things:
 - (I) CONSERVATION OF MASS
 - The total amount of mass remains constant in any process, chemical or physical!

LAW OF DEFINITE PROPORTIONS (also called the LAW OF CONSTANT COMPOSITION): All pure samples of a given compound contain the same proportion of elements by mass

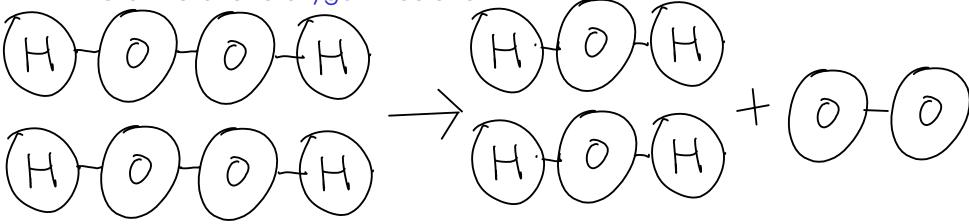
The parts of Dalton's theory


- Matter is composed of small, chemically indivisible ATOMS
- ELEMENTS are kinds of matter that contain only a single kind of atom. All the atoms of an element have identical chemical properties.
- COMPOUNDS are kinds of matter that are composed of atoms of two or more ELEMENTS which are combined in simple, whole number ratios.

Most importantly,

- CHEMICAL REACTIONS are REARRANGEMENTS of atoms to form new compounds.
 - Atoms are not gained or lost during a chemical reaction.
 - Atoms do not change their identity during a chemical reaction.
 - All the atoms that go into a chemical reaction must go out again!

Another look at chemical reactions


The decomposition of hydrogen peroxide over time (or when poured over a cut) works like this:

... but wouldn't this mean that somehow an extra oxygen atom would form?

Not according to Dalton's theory. Dalton's theory would predict a different

RATIO of water and oxygen would form:

$$2H_2O_1 \longrightarrow 2H_2O + O_2$$

- Dalton's theory sets LIMITS on what can be done with chemistry. For example:
 - Chemistry can't convert lead (an element) into gold (another element). Sorry, alchemists!
 - You can't have a compound form in a chemical reaction that contains an element that was not in your starting materials.
 - You can only make a certain amount of desired product from a fixed amount of starting material.

Atomic structure

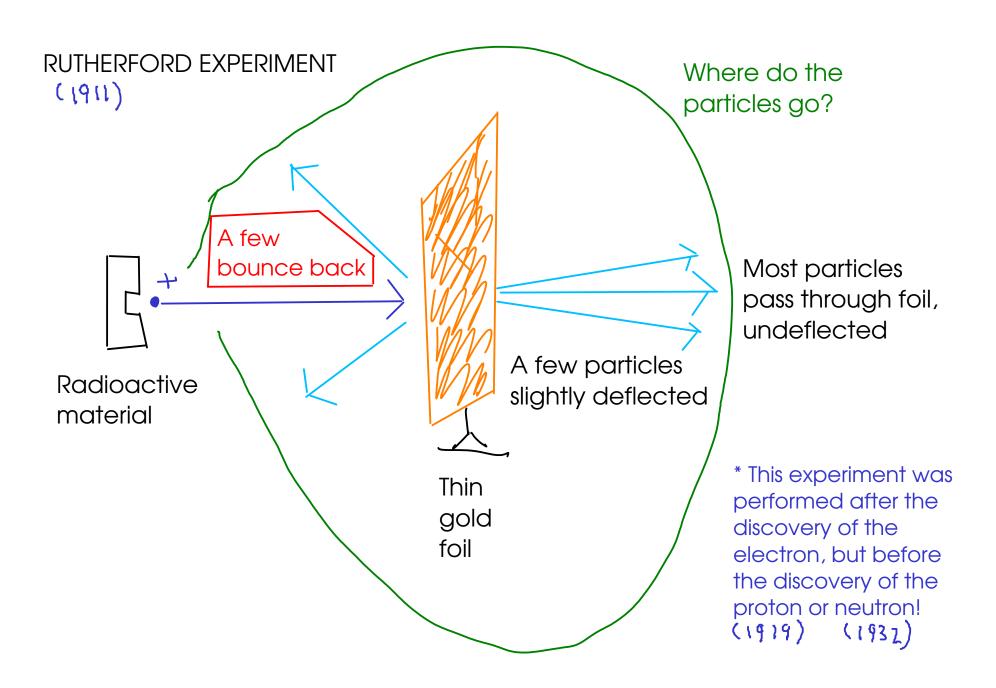
- Until the early 20th century, chemists considered atoms to be indivisible particles.
- The discovery of SUBATOMIC PARTICLES changed the way we view atoms!

The subatomic particles

PROTON

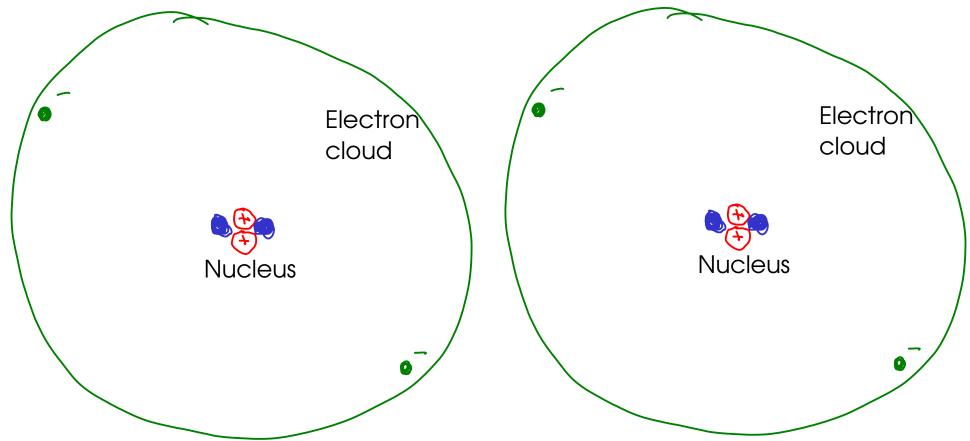
- a small, but relatively massive particle that carres an overall unit POSITIVE CHARGE

NEUTRON


- a small, but relatively massive, particle that carries NO CHARGE
- slightly more massive than the proton

ELECTRON

- a small particle that carries an overall unit NEGATIVE CHARGE
- about 2000 times LESS massive than either protons or neutrons

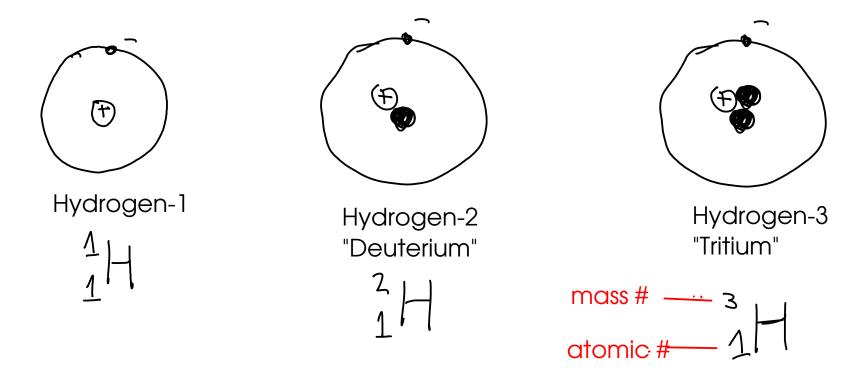

Putting it together...

- In the early 20th century, there was a debate on the structure of the atom.

NUCLEAR MODEL

- Atoms are mostly empty space
- <u>NUCLEUS</u>, at the center of the atom, contains protons and neutrons. This accounts for almost all the mass of an atom
- Electrons are located in a diffuse <u>ELECTRON CLOUD</u> surrounding the nucleus

Why are atoms stable (why don't they change identity) during a reaction? The nucleus of an atom is not involved in chemical reactions, and the nucleus controls what kind of atom you have!

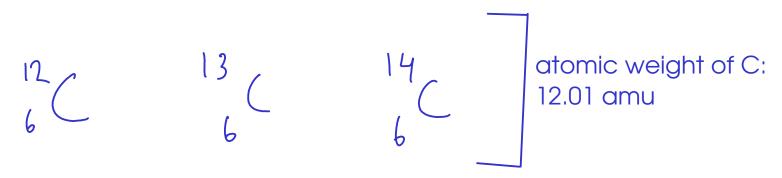

Atomic terms

- <u>ATOMIC NUMBER</u>: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the atomic number.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

- MASS NUMBER: The number of protons PLUS the number of neutrons in the atomic nucleus, Atoms of the same element may have DIFFERENT mass numbers.
- <u>ISOTOPES</u>: are atoms of the same element with different mass numbers. In other words, they have the same number of protons but different numbers of neutrons.

A few isotopes


<u>Isotope</u>s

- Have identical CHEMICAL properties
- Differ in MASS
- May differ in stability. Elements may have some isotopes that are RADIOACTIVE

Atomic weight

- The AVERAGE MASS of all naturally occurring isotopes of an element.

Example: Hydrogen has an atomic weight of 1.008 "atomic mass units" (Naturally-occurring hydrogen is almost all Hydrogen-1!)

(Natural carbon is mostly carbon-12)

(Natural chlorine is mostly chlorine-35)

- Mendeleev (1869):
- --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods)
- --- Some of the physical and chemical properties of atoms could be calculated based on atomic weight
- Mendeleev was able to predict the properties of <u>previously unknown</u> <u>elements</u> using his "periodic law"

Modern periodic table

- organized based on <u>ATOMIC NUMBER</u> rather than ATOMIC WEIGHT. This eliminated some problems (elements out or order) with Mendeleev's original arrangement