Measurements are COMPARISONS of properties against accepted standards, called units.

A properly-reported measurement has TWO PARTS:
(1) a measured NUMBER
(2) a UNIT

$$
\begin{aligned}
& \text { English/USUnits: } \\
& \begin{array}{l}
1 \text { foot }=12 \text { inches } 1 \text { yard }=3 \text { feet } 1 \text { mile }=1760 \text { yards } \\
\qquad 5280 \text { feet }=1 \text { mile }
\end{array}
\end{aligned}
$$

So what's the problem?
The English system is messy because it consists of units for the same kinds of things that were developed independently of each other - so we have to memorize a bunch of essentially random numbers just to use the system.

Add to that - each differnt kind of thing we measure has completely different numbers relating the units ...

English units are nonstandard and difficult to use. Solution? THE METRIC SYSTEM

All metric units are made up of COMBINATIONS of BASE UNITS!

Metric Base Units:

Length	meter	m		
Mass	kilogram	kg	$*$ *we usually treat the gram as if it's the base unit for mass!	
Temperature	Kelvin	K	Comparing to the English system:	
Time	second	s	- One meter is approximately 3.3 feet. - One kilogram is approximately 2.2 pounds.	

about

$$
S\left[-\left[\begin{array}{l}
5 \\
1
\end{array}\right.\right.
$$

Metric units may be made larger or smaller by adding PREFIXES.
Metric Prefixes:

mega-	10^{6}	M
kilo-	10^{3}	k
centi-	10^{-2}	c
milli-	10^{-3}	m
micro-	10^{-6}	μ

Bigger units
Memorize these prefixes.!

Applying prefixes

$$
\begin{aligned}
& \left.1 \ldots m=10^{1} m=1 \frac{1}{1000} m\right) \\
& \Lambda<m=10^{3} m(1000 m)
\end{aligned}
$$

Scaling units with metric prefixes ... examples

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

$$
\begin{aligned}
& K=10^{3}(1000) \\
& W m=1000 \mathrm{~m} \\
& 10) \mathrm{km}
\end{aligned}
$$

By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best suited for this length?

$$
\begin{aligned}
& \text { for this length? } \\
& C=10^{-2} \quad(1 / 100) \\
& C m=1 / 100 \mathrm{~m}
\end{aligned}
$$

Derived Units

- are units that are made up of combinations of metric base units with each other and/or with prefixes

Example: Speed $\frac{\text { miles }}{h r}, \frac{K m}{h r}\left(\frac{\text { length }}{\text { time }}\right), \frac{m}{s}$
Two derived units are particularly important in introductory chemistry:

1) VOLUME
2) DENSITY

VOLUME

$$
\text { VOLUME }=L \times W \times H
$$

What are the units of volume in the metric system?

$$
L=\text { LENGTH. }=\text { meter }
$$

L

$$
\begin{aligned}
& W=\text { WIDTH. }=\text { meter } \\
& H=\text { HEIGHT }=\text { meter }
\end{aligned}
$$

$$
\begin{aligned}
\text { VOLUME UNIT } & =m \times m \times m \\
& =m^{3} \text { "cubic meters" }
\end{aligned}
$$

Practical problem: The cubic meter is a very LARGE volume unit for laboratory-scale work.

Solution? We need to scale this unit down by using metric prefixes!

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

A smaller unit For volume?
cubic decimeters! dm^{3}

$$
(\text { decimeter }=1 / 10 \text { meter })
$$

Cubic decimeters are given the name "liters", abbreviation "L"
In the lab, we typically need an even smaller unit than the liter, so we use milliliters (mL)

"cc"
cubic centimeter
=
milliliter

$$
\begin{aligned}
& 1 m L=10^{-3 L} \\
& 1000 m L=1 L
\end{aligned}
$$

- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

What are the metric units of DENSITY?

$$
\begin{aligned}
& \text { mass: Kilogram }\left(h^{\prime} g\right) \\
& \text { volume: Cubic meters }\left(m^{3}\right) \\
& \text { So, density unit }=h^{k^{\prime} g} \begin{array}{l}
\text { These units aren't routinely used } \\
\text { in the lab. They're too large } \\
\text { (like the volume unit tiself). } \\
\text { so we just use our lab units! }
\end{array}
\end{aligned}
$$

Note: Typical lab balances can measure up to several hundred grams (in other words, less than a kilogram)

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:

$$
\frac{g}{m L} \text { same as } \frac{g}{\mathrm{~cm}^{3}}
$$

A useful density to remember:
WATER at room temp: Density $=1 \mathrm{~g} / \mathrm{mL}$

Measuring density
... of a liquid

1) Measure mass of empty cylinder
\qquad
2) Subtract to find mass of liquid

$$
\begin{array}{r}
30.559 \\
-\quad 97.359 \\
\hline 33.209
\end{array}
$$

2) Fill cylinder and measure volume of liquid

Volume $=25.3 \mathrm{~mL}$
3) Measure mass of filled cylinder

$$
\operatorname{mass}=130.55 \mathrm{~g}
$$

5) Density = mass liquid $/$ volume liquid

$$
\begin{aligned}
\text { Density } & =\frac{33.20 \mathrm{~g}}{25.3 \mathrm{~mL}} \\
& =1.31 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

We will use the method of dimensional analysis, sometimes called the factor-label method.... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.

$$
\begin{aligned}
& \text { Example } \\
& 12 \mathrm{in}=1 \mathrm{ft}
\end{aligned}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\left.\begin{aligned}
& \text { For example, "Kilo-" means } 10^{3} \\
& K=10^{3} \\
& \text { so } \\
& \frac{K g}{}=10^{3} \mathrm{~g} \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& K L=10^{3} \mathrm{~L} \\
& K s=10^{3} \mathrm{~s}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

Convert 15.75 m to cm

$$
15.75 \mathrm{~m} \times \frac{\mathrm{cm}^{2}}{10^{-2} \mathrm{~m}}=1575 \mathrm{~cm}
$$

Put what you want to cancel on the bottom, then ...
put what it equals on the top!

Convert 0.01893 kg to g

$$
K g=10^{3} g
$$

$$
0.01893 \mathrm{~kg} \times \frac{10^{3} \mathrm{~g}}{\mathrm{Kg}}=18.93 \mathrm{~g}
$$

