CHM 110 - Practice Problems
Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.

1) 0.00157 km to mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
19) $0.00874 \mu \mathrm{~g}$ to mg

CHM 110 - Practice Problems
Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
2) 55000 g to kg

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
20) 9.89 cs to ms

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
3) 42.5 L to mL

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
4) 137 in to m (Note: $1 \mathrm{in}=2.54 \mathrm{~cm}$)

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
22) $13.6 \mathrm{~m}^{3}$ to mm^{3}

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
5) 0.847 Mg to kg

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
23) 24.5 in to m , You may assume that $2.54 \mathrm{~cm}=$ in

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
6) 5650 feet to furlongs.
(Assume that $\mathbf{1}$ furlong = $\mathbf{2 2 0} \mathbf{y d}$, and that $\mathbf{3} \mathbf{f t}=\mathbf{1} \mathbf{y d}$. These relationships are exact!)

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
24) 1.35 miles to inches, assuming $1760 \mathrm{yd}=\mathrm{mi}, 3 \mathrm{ft}=\mathrm{yd}, 12 \mathrm{in}=\mathrm{ft}$

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
7) 0.328 cm to mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
25) 21.47 inches to yards, assuming $12 \mathrm{in}=\mathrm{ft}, 3 \mathrm{ft}=\mathrm{yd}$

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
8) $1.3 \mu \mathrm{~L}$ to nL

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
26) 132 nm to mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
9) 0.55 mg to g

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
27) $1.35 \times 10^{6} \mu \mathrm{~g}$ to cg

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
10) Calculate how many gallons of gas would be required to drive 155 miles in a car whose fuel usage is 32 miles per gallon.

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
28) $1.3 \mu \mathrm{~g}$ to g

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
11) 12.4 mg to g

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
29) 0.0017 Mg to kg

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
12) $1300000 \mu \mathrm{~g}$ to mg

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
30) 0.0000129 cm to Mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
13) 87.0 mL to L

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
31) 0.472 yards to inches, assuming $12 \mathrm{in}=\mathrm{ft}, 3 \mathrm{ft}=\mathrm{yd}$

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
14) 64700 cm to Mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
32) $34.3 \mathrm{in}^{3}$ to ft^{3}, assuming $12 \mathrm{in}=\mathrm{ft}$

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
15) 0.00087 km to cm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
33) $27.3 \mu \mathrm{~L}$ to mL

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
16) 0.00000009 kg to g

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
34) 12 m to mm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
17) 0.0000874 m to cm

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
35) 0.013 ks to ms

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
18) 0.7350 L to mL

Solve the problem. Show your dimensional analysis setup in the space given below. Draw a box around your final answer. See the other side of the page for your second problem.
36) 11 s to $\mu \mathrm{s}$

