163
$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$... Find the pH of the solution
$\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$is the salt acidic, basic, or neutral?

$$
\mathrm{NH}_{4}^{+}: \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Is this molecule stable in water? YES ... exists mostly as molecules when dissolved in water!

$$
\mathrm{Cl}^{-}: \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCl}+\mathrm{OH}^{-}
$$

HCl is a STRONG ACID ... in other words, it ionizes completely in water. Therefore, Cl - is not going to be a proton acceotor. It's NEUTRAL.

So, we will need to solve this equilibrium:

$$
\begin{aligned}
& \mathrm{NH}_{4}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}}{ } \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned}
$$

$x^{2}$

$$
\begin{aligned}
\mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka}_{\mathrm{a}} & =\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned}
$$

Once we've calculated Ka ... this problem is solvable the same way you solve any weak acid problem.

We will need to find the Ka of ammonium ion by looking at the Kb of its conjugate base ... ammonia.

$$
\begin{aligned}
& K_{b, \omega L_{3}}=1.8 \times 10^{-5} \quad(p A=14) \\
& \text { Since } K_{a} \times K_{b}=1.0 \times 10^{-14} \text { for }
\end{aligned}
$$ conjugate pairs,

$$
K_{a_{1} \mathrm{NH}_{4}}=S . S 6 \times 10^{-10}
$$

| Species | [In, Ital | $\Delta$ | $\left[\right.$ Gqullibriom $^{\text {G }}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{3}$ | 0 | $+X$ | $x$ |
| $\mathrm{H}_{3} 0^{+}$ | 0 | $+X$ | $x$ |
| $\mathrm{NH}_{4}^{+}$ | 0.100 | $-x$ | $0,100-x$ |

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=5.56 \times 10^{-10} \\
& \left.\right|^{x<c<0.100} \\
& \text { so } 0.100-x \approx 0.100 \\
& \frac{x^{2}}{0.100}=5.56 \times 10^{-10} \\
& x=7.45 \times 10^{-6}
\end{aligned}
$$

$$
\begin{array}{r}
\text { So, }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.45 \times 10^{-6} \\
p H=S .13
\end{array}
$$

$$
\mathrm{pH}=7.00 \text { for distilled water }
$$

$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find PH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed by the salt to see if they're acidic, basic, or neutral:
$\mathrm{Na}^{+}$: Not a B-L acid (no H+ to donate). Not likely to be a B-L base (H+ acceptor) either due to its positive charge.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$; Has hydrogens, so could conceivably be a B-L acid. It's probably a proton acceptor, though, due to the negative charge.

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
$$

- ACETIC ACID ... a well-known WEAK ACID. It's stable in water, so we expect that acetate ion should function as a BASE.

$$
\begin{aligned}
& \mathrm{Ka}_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.2 \times 10^{-5} ; \mathrm{S}_{0} \mathrm{~Kb}_{1 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}}=\frac{1.0 \times 10^{-14}}{1.7 \times 10^{-5}} \\
& \mathrm{~K}^{\mathrm{C}}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{-}=5.88 \times 10^{-10}
\end{aligned}
$$

166

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& W_{3, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10}
\end{aligned}
$$

| Species | [Initial] | $\Delta$ | $\left[E_{\text {quilibrium }}\right]$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | O | $+x$ | $x$ |
| $\mathrm{OH}^{-}$ | O | $+X$ | $x$ |
| $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ | 0.100 | $-x$ | $0.100-x$ |

$$
\begin{aligned}
\frac{x^{2}}{0.100-x} & =5.88 \times 10^{-10} \\
\quad \begin{array}{l}
x \\
\text { So }
\end{array} & 0.100-x=0.100 \\
\frac{x^{2}}{0.100} & =5.88 \times 10^{-10}
\end{aligned}
$$

$$
x=7.67 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]
$$

We need pH, but we've calculated HYDROXIDE concentration. Remember to convert it at the end! $\mathrm{POH}=-\log _{10}\left(2.67 \times 10^{-6}\right)$

$$
\text { POL }=5.12
$$

Convert to pH

$$
P O H=5.12
$$

Since $\mathrm{PH}+\mathrm{POH}=14.00$

$$
p H=8.88
$$

Compare:
$\mathrm{pH}=7.00$ for pure distilled water
$\mathrm{pH}=11.13$ for 0.100 M ammonia
$\mathrm{pH}=13.00$ for 0.100 M NaOH (strong base)

168

$$
\begin{aligned}
& \text { O. } 100 \mathrm{M} \mathrm{NaCl} \text {, Find } \mathrm{pH} \\
& \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed by the salt to see if they're acidic or basic...
Na t : Not a B-L acid since it has no protons $(\mathrm{H}+$ ) to donate. Not likely to be B-L - base either - due to its positive charge.

Cl ${ }^{-}$: Not a B-L acid (no $\mathrm{H}+$ ), put it MIGHT be able to accept protons.

$$
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCl}+\mathrm{OH}^{-}
$$

This is hydrochloric acid ... a well-known STRONG ACID. It completely ionizes in water, which means that the chloride ion is not able to hang on to an accepted proton very well. In other words, chloride ion doesn't function as a base ... and should be neutral.

Since neither ion affects pH , the pH will be set by the water equilibrium alone, and this solution will have a pH of $\underline{7.00}$ - same as the pH of distilled water.

169 POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a 3}=4.8 \times 10^{-13}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}_{1}=6.9 \times 10^{-3} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

| Species | [Initial] | $D$ | [Equilibrium] |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | 0.10 | $-x$ | $0.20-x$ |
| $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ | 0 | $+x$ | $x$ |
| $\mathrm{H}_{3} \mathrm{O}^{+}$ | 0 | $+x$ | $x$ |
| $x^{2}$ |  |  |  |

$$
\left.\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \begin{array}{l}
\text { This time, we'll solve the quadratic equation. We're not quite } \\
\text { as confident that ' } x \text { '< }<0.10 \text { as we were in previous examples. } \\
\text { (The equilibrium constant is a good bit larger here!) }
\end{array} \\
& x^{2}=0.00069-0.0069 x
\end{aligned} \right\rvert\, \begin{aligned}
& x=\frac{-0.0069 \pm 0.0529868852}{2} \\
& x^{2}+0.0069 x-0.00069=0
\end{aligned}
$$

$$
\begin{gathered}
x^{2}=0.00069-0.0069 x \\
x^{2}+0.0069 x-0.00069=0 \\
a=1 \quad b=0.0069 \quad c=-0.00069 \\
x=\frac{-0.0009 \pm \sqrt{(0.0069)^{2}-4(1)(-0.00069)}}{2(1)}
\end{gathered}
$$

Discard the negative root. 'x' cant be less than zero (it's equal to two of the concentrations!)

$$
\begin{aligned}
& \text { concentrations! } \\
& x=0.0230=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=1.64
\end{aligned}
$$

${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250 . mL of solution.
FInd out the nature of the salt: Acidic? Basic? Neutral?

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{\prime} \\
& \mathrm{NO}_{3}^{-}: \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is a STRONG ACID, } \\
\text { so NITRATE ION should be } \\
\text { neutral! }
\end{array} \\
& \mathrm{NH}_{4}^{+}: \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O} \begin{array}{l}
\text { Ammonia is a WEAK BASE, so } \\
\text { AMMONIUM ION should be } \\
\text { acidic. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka}_{1} \mathrm{NH}_{4}+ & =\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{K_{a}, \mathrm{NH}_{4}+:}{\mathrm{K}_{\mathrm{b}, \mathrm{NH}}^{3}}=1,8 \times 10^{-S}(\beta \mathrm{~A}-14) \\
\text { So } \mathrm{Wa}_{\mathrm{a}}, \mathrm{NH}_{4}+
\end{array} \\
& =\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} \\
& \\
& =5.56 \times 10^{-10}
\end{aligned}
$$

To set this problem up, weill need to calculate the INITIAL concentrations of each species - then we can make our usual equilibrium chart...

$$
\begin{aligned}
& 3.00 \mathrm{y} \mathrm{NH}_{4} \mathrm{NO}_{3} \text { in } 0.250 \mathrm{~L} \text { solution } \\
& \text { NHYNQ: N: } 2 \times 14.01 \\
& H: 4 \times 1.008
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{NH}_{4} \mathrm{NO}_{3}\right]_{\text {nominal }}=\frac{0.0374756408 \mathrm{~mol}}{0.280 \mathrm{~L}}=0.1499025633 \mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
{ }^{122} \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{K}_{\mathrm{a}_{1} \mathrm{NH}_{4}+} & =\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
\end{aligned} \quad\left[\mathrm{NH}_{4} \mathrm{NO}_{3}\right]_{\text {numina }}=0.1499025633 \mathrm{~m}
$$

| Species | [Initial] | $\Delta$ | [Equilibrium] |
| :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{4}+$ | 0.14990 | $-x$ | $0.14990-x$ |
| $\mathrm{NH}_{3}$ | 0 | $+x$ | $x$ |
| $\mathrm{H}_{3} 0^{+}$ | 0 | $+x$ | $x$ |

Solve:

$$
\begin{aligned}
& \frac{x^{2}}{0.14990-x}=5.56 \times 10^{-10} \\
& \downarrow \times 260.14990 \\
& \frac{x^{2}}{0.14990}=5.56 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} 0^{+}\right] \\
& p H=S .04
\end{aligned}
$$

This pH seems reasonable for an acidic salt of this concentration.

## THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ss}) \rightarrow \mathrm{NH}_{4}{ }^{+}\left(\mathrm{aqq}_{q}\right)+\mathrm{Cl}^{-}(\mathrm{aq})$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}\left(a_{q}\right)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}\left(\mathrm{a}_{q}\right)+\mathrm{OH}+\left(\mathrm{a}_{4}\right) ; \mathrm{K}_{b}=1.8 \times 10^{-5}
$$

| Species | [Initial $]$ | $\Delta$ | EEqulibsium $]$ |
| :---: | :---: | :---: | :---: |
| NH 3 | 0.10 | $-x$ | $0.10-x$ |
| $\mathrm{NH}_{4}{ }^{+}$ | 0.10 | $+X$ | $0.10+x$ |
| $\mathrm{OH}^{-}$ | 0 | $+X$ | $X$ |

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}+\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

$$
\frac{(0.10+x)(x)}{(0.10-x)}=1.8 \times 10^{-5}
$$

$$
x=1.8 \times 10^{-5}=\left[04^{-}\right]
$$

$$
\mathrm{POH}=-10_{10}\left(1.8 \times 10^{-5}\right)=4.74
$$

$$
p H=9.26
$$

The common-ion effect suppresses the ionization of the amonia to an extent, lowering

$$
\frac{0.10 x}{0.10}=1.8 \times 10^{-5}
$$

## BUFFERS

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak $\mathrm{NH}_{3}$ ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text { ) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

