ACID/BASE EQUILIBRIUM

- Several scientific theories exist that define acid-base chemistry. We will discuss THREE of these theories.
- These theories differ in the way that acids, bases, and their associated reactions are defined.
- Typically, the newer theories include MORE chemicals under the umbrella of "acid-base chemistry"!

THREE ACID-BASE THEORIES

(I) Arrhenius theory
(2) Bronsted-Lowry theory
(3) Lewis theory

ARRHENIUS THEORY

- The oldest model of acid-base chemistry!
- Only applicable to systems where WATER is the solvent!

ACIDS are substances that ionize in water to increase the concentration of HYDRONIUM ION

$$
\text { or, for simplicity: } \mathrm{HA} \stackrel{\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{A}^{-}}{ } \begin{aligned}
& \text { "Hydrogen ion" - doesn't } \\
& \text { really exist as a free ion in } \\
& \text { water, but a convenient } \\
& \text { simplification! }
\end{aligned}
$$

ARRHENIUS THEORY

BASES are substances that ionize in water to increase the concentration of HYDROXIDE ION

For soluble metal hydroxides:

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

$$
\mathrm{MOH} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{M}^{+}+\frac{\mathrm{OH}^{-}}{L} \text { Hydroxide ion }
$$

For other Arrhenius bases:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \quad \mathrm{ex}_{2}: \mathrm{NH}_{3}
$$

An Arrhenius acid base reaction can be represented by:

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O} \quad \text { "neutralization" }
$$

or, using hydrogen ion instead of hydronium

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}
$$

BRONSTED-LOWRY THEORY
 BRONSTED-LOWRY THEORY

- Bronsted-Lowry theory views acid-base reactions as PROTON TRANSFER reactions!

ACIDS are PROTON DONORS

BASES are PROTON ACCEPTORS

A CONJUGATE PAIR is an acid and a base that differ by a proton!
... a few examples of conjugate pairs:

Species	Conjugate
NH_{3}	NH_{4}^{+}
$\mathrm{H}_{2} \mathrm{O}$	OH
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

A generic Bronsted-Lowrey acid. base reaction:

... you should be able to write the products of a Bronsted-Lowry acid-base reaction, identifying the CONJUGATE PAIRS

IN WATER...

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3}^{+}+\mathrm{A}^{-} \\
& \begin{array}{l}
\text { conjugate base } \\
\text { of HA }
\end{array} \\
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \text {Acetic acid and water }
\end{aligned}
$$

$$
\underset{\substack{\mathrm{B} \\ \text { base }}}{\mathrm{B}} \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\substack{\text { conjugate acid } \\ \text { of }}}{\underset{\mathrm{BH}}{ }}+
$$ of B

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\frac{\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}}{}{ }^{-} \text {Ammonia and water }
$$

In the red reactions, water functions as a base. In the blue reactions, water functions as a acid!

LEWIS THEORY

- Lewis theory treats acid-base chemistry as ELECTRON-TRANSFER chemistry involving pairs of electrons
- Lewis acid-base reactions form new covalent bonds (of interest to organic chemists!)

ACIDS are ACCEPTORS of electron pairs
... this is why some METAL IONS, even though they contain no hydorgen ions,
can exhibit ACIDIC character. Many metal ions can accept a pair of electrons to form a COMPLEX with a Lewis base! ex: $\mathrm{Ag}_{\mathrm{g}}\left(\mathrm{NH}_{3}\right)_{2}^{+}$
BASES are DONORS of electron pairs.
... so, Lewis bases have LONE PAIRS OF ELECTRONS in their Lewis structures

... In a Lewis acid-base reaction, electrons are donated from the Lewis base to the Lewis acid. This forms a new COVALENT BOND between the acid and the base.

Example: ammonia and water

$$
\text { Overall: } \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}
$$

${ }^{136}$ COMPARING THE THEORIES

- From Arrhenius to Lewis, the definitions get broader as you go along. In other woeds, the later definitions include MORE SUBSTANCES under the acid/base umbrella.

If something is an Arrhenius acid, it is also an acid in the Bronsted or Lewis picture. If something is an Arrhenius base, it is also a base in the Bronsted or Lewis picture.

All Bronsted acids are Lewis acids, and all Bronsted bases are Lewis bases.
... but not all Lewis acids/bases (like the metal ions) are Bronsted or Arrhenius acids/bases.

... We will primarily use the BRONSTED-LOWRY theory from this point in the course!

- Water self-ionizes!

$$
\begin{aligned}
2 \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

This is an equilibrium reaction!

$$
K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}} \quad(X)=\text { molar concentration of "X" }
$$

In aqueous solution, ($\mathrm{H}_{2} \mathrm{O}$) is essentially constant, so we roll that into K.

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

This is the value at 25 C

WATER CHEMISTRY

- The self-ionization of water has a small equilibrium constant. What does this imply?

THE CONCENTRATION OF HYDROXIDE AND HYDRONIUM ION IN PURE WATER IS VERY SMALL!

How small?

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

_-In pure water, the concentration of hydroxide and hydronium must be equal, since they are formed at the same time and at the same ratio from the ionization reaction of water.

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

Solve...
Let ' x ' equal the change in concentration of hydronium ion...

$$
\begin{aligned}
(x)(x) & =1.0 \times 10^{-14} \\
x^{2} & =1.0 \times 10^{-14} \\
x & =1.0 \times 10^{-7} \mathrm{~m}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[0 \mathrm{H}]
\end{aligned}
$$

- "p" notation helps us deal with the very small numbers we encounter when working with acids, bases, and water.
- based on log base 10

On a calculator, use

$$
\text { "p" means }-\log _{10}
$$

So,

$$
\begin{aligned}
& \rho H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \\
& \rho \mathrm{OH}=-\log _{10}\left[\mathrm{OH}^{-}\right]\left[\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}\right.
\end{aligned}
$$

"p" NOTATION

- Apply "p" notation to the water self-ionization reaction!

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14} \\
\text { becomes } \ldots \\
K_{w}=p H+p O H=14.00
\end{gathered}
$$

Taking the " p " (negative log base ten) of the equilibrium constant is often used for BUFFER SOLUTIONS, which we'll discuss later!

ACIDITY AND ALKALINITY

- At $\mathrm{pH}=7, \mathrm{pH}=\mathrm{pOH}$. The solution is considered NEUTRAL

$$
\text { L Also, }\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]!
$$

- At $\mathrm{pH}<7, \underline{\mathrm{pH}}<\mathrm{pOH}$. The solution is considered ACIDIC

$$
\text { L Also, }\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]!
$$

- At pH $>7, \underline{\mathrm{pH}}>\mathrm{pOH}$. The solution is considered ALKALINE (BASIC)

$$
L \text { Also, }\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]!
$$

The pH scale...

$$
\begin{aligned}
& \left|\begin{array}{c|}
\text { ACIDIC } \\
{\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}}
\end{array}\right| \\
& \mathrm{pH}=0 \\
& \mathrm{pH}=7 \\
& \mathrm{pH}=14 \\
& \text { NEUTRAL } \\
& {\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}}
\end{aligned}
$$

pH AND TEMPERATURE

$$
p K_{w}=p H+p O H=14.00
$$

This equation is valid at room temperature, specifically $25^{\circ} \mathrm{C}$.
Equilibrium constants depend on TEMPERATURE, and change with temperature.
So, the "neutral" pH (where the concentration of hydroxide and hydronium ions are equal) CHANGES with changing temperatures

This change is important at temperatures greatly different from $25^{\circ} \mathrm{C}$.
As an example, consider average "normal" human body temperature: $37^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
\text { At } 37^{\circ} \mathrm{C}, & \text { ptrw }=13.60 \\
& \text { pH of neutral solution }=6.8
\end{array}
$$

ACID-BASE EQUILIBRIUM IN WATER

- Like other ELECTROLYTES, acids and bases IONIZE to some extent in water
- STRONG electrolytes ionize completely. Acids and bases that ionize completely in water are called STRONG ACIDS and STRONG BASES
- WEAK electrolytes ionize partially, remaining mostly non-ionized. Acids and bases that ionize only partially in solution are called WEAK ACIDS and WEAK BASES.
- Most acids and bases are WEAK!

Common strong acids
HCl
HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$ (only د $^{\text {St proton) }}$
HBr HI

Common strong bases

$$
\left.\begin{array}{l}
\mathrm{NaOH} \\
\mathrm{KOH}
\end{array}\right] \begin{aligned}
& \text { alhalimetal } \\
& \text { hydroxides } \\
& \text { (GroupIA) }
\end{aligned}
$$

SIMPLE pH CALCULATIONS: STRONG ELECTROLYTES

- With strong acids and bases, the acid or base completely ionizes in water. So, we only have to worry about the effect of the acid or base on the water equilibrium itself.
- Since the equilibrium constant for the self-ionization of water is so small, the strong acid or base will overpower the hydronium (for acids) or hydroxide (for bases) produced by the water.

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} ; \mathrm{k}_{\omega}=1.0 \times 10^{-14}
$$

Consider a solution of 0.025 M nitric acid (a strong acid):

$$
\mathrm{HNO}_{3}(\mathrm{qq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Assume that al of the hydronium ion in this solution comes from the nitric acid, since the acid will suppress water's self-ionization (Le Chateleir's Principle)

$$
\mathrm{So}_{1}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HNO}_{3}\right]_{\text {numina }}=0.02 \mathrm{~S} \mathrm{MH}_{3} \mathrm{O}^{+}
$$

$$
p H=-\log _{10}(0.025)=1.60^{*}
$$

What would the HYDROXIDE ION concentration be under these conditions?

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1.0 \times 10^{-14} \\
(0.025)\left[\mathrm{DH}^{-}\right] & =1.0 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =4.0 \times 10^{-13} \mathrm{M}
\end{aligned}
$$

* For logarithms, the places AFTER the decimal point are significant digits, while the ones in front are not they essentially represent the exponent of the original number.
... this equals the concentration of water that has self-ionized ... and it's quite small!

Consider a solution of 0.0125 M sodium hydroxide (a strong base):

$$
\mathrm{NaOH}_{a}(a q) \rightarrow \mathrm{Na}_{a}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Like before, we will assume that all of the hydroxide ion in solution comes from the sodium hydroxide, since we expect the presence of hydroxide from sodium hydroxide to suppress self-ionization of water.

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]_{\text {numina }}=0.0125 \mathrm{M} \mathrm{OH}^{-}
$$

Wed like to know pH. First, find pOH .

$$
p o f 1=-\log _{10}(0.0125)=1.90
$$

... and remember that pOH is related to pH

$$
\begin{aligned}
p H+p O H & =14.00 \\
p H+1.90 & =14.00 \\
p H & =12.10
\end{aligned}
$$

Let's check the concentration of HYDRONIUM ion, since that will tell us how much water has self-ionized. Remember that we assumed this would be so small we could ignore its effect on the hydroxide concentration...

$$
\begin{aligned}
& \text { on the hydroxide concentration... } 12.10 \\
& \begin{array}{l}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}=10^{-12}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.0 \times 10^{-13} \mathrm{MH}_{3} \mathrm{O}^{+}}
\end{array}
\end{aligned}
$$

... This also equals the amount of hydroxide produced by water itself, and is definitely MUCH smaller than the 0.0125 M concentration produced by the base.
${ }^{146}$ (A) What is the concentration of hydronium ion in an aqueous solution whose pH is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
A) $p H=10.50,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$?

$$
\begin{aligned}
& 10^{-\mathrm{PH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.50}=3,2 \times 10^{-11} \mathrm{MH}_{3} \mathrm{H}^{+}}
\end{aligned}
$$

B)

$$
\begin{aligned}
& {\left[\mathrm{HJO}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& \left(3.2 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4} \mathrm{MOH}}
\end{aligned}
$$

C) $\mathrm{NaOH}_{\mathrm{a}} \rightarrow \mathrm{Na}_{4}^{+}+\mathrm{OH}^{-} \quad<-$ The strong base sodium hydroxide should 1., ratio of $\mathrm{NuOH}: \mathrm{OH}^{-}$Completely ionize...

$$
\begin{aligned}
& \text { I ratio of Nam: } 04 \text {, So } \\
& \text { [NOW }]_{\text {nominal }}=3.2 \times 10^{-4} \mathrm{M} \quad(0.00034 \mathrm{~m})
\end{aligned}
$$

What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution?
$\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}$

$$
M=\frac{\text { mol Nu04 }}{\text { L solution }<0.5000 \mathrm{~L}}
$$

Find concentration of sodium hydroxide:

$$
\begin{aligned}
& 2.50 \mathrm{~g} \mathrm{NaOH} \times \frac{\mathrm{mul} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaHH}}=0.0625 \mathrm{molNaH} \\
& M=\frac{\mathrm{mul} \mathrm{NuOH}}{\mathrm{~L} \text { sulution }}=\frac{0.0625 \mathrm{mal} \mathrm{NaOH}}{0.5000 \mathrm{~L}}=0.125 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

Since sodium hydroxide is a STRONG BASE, we expect it to completely ionize in solution and control the amount of hydroxide present.

$$
\begin{aligned}
& \mathrm{NuOH} \rightarrow \mathrm{Na}_{\mathrm{n}}+\mathrm{OH}^{-} ;\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]_{\text {numinul }} \\
& {\left[\mathrm{OH}^{-}\right]=0.125 \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& {\left[\mathrm{HJO}^{+}\right](0.125 \mathrm{~m})=1.0 \times 10^{-14}} \\
& {\left[H_{30^{+}}\right]=8.0 \times 10^{-14}} \\
& p H=13.10
\end{aligned}
$$

