EXAMPLE: Calculate the grams per liter of silver (i) chloride (AgCl) in a solution that is at equilibrium with solid AgCl .

$$
K_{c}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10}
$$

Species	[Initial	Δ	$[$ Equilibrium $]$
$\mathrm{Ag}_{5}{ }^{+}$	0	$+X$	x
Cl^{-}	0	$+X$	x

Assign a variable, 'x', to equal the change in concentration of the silver(I) ion...

Each time we make a silver(I) ion, we also make a chloride ion. See the equation ...

$$
\begin{aligned}
{\left[\mathrm{Ag}^{+}\right]\left[C I^{-}\right] } & =1.8 \times 10^{-10} \quad \\
(x)(x) & =1.8 \times 10^{-10}<\quad \begin{array}{l}
\text { subsitiute the variable ' } x^{\prime} \text { into the equilibrium } \\
x^{2}
\end{array}=1.8 \times 10^{-10} \quad \text { experssion, then solve for ' } x^{\prime} . \\
x & =1.34 \times 10^{-5} ;\left[\mathrm{Ag}_{g}^{+}\right]=\left[C 1^{-}\right]=1.34 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

The concentration of DISSOLVED AgCl also equals ' 'x' ... since for every dissolved AgCl you have a dissolved Ag.ion: 1.9 ppm (parts per million). ppm
is same as mg / L for dilute aqueous solutions

119

$$
\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PC} \mathrm{I}_{\delta}(g) \quad K_{C}=49
$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the composition of the equilibrium mixture?

Initial conditions

We've defined 'x' to be the change in concentration of phosphorus trichloride!

Rearrange the experssion to make it easuer to solve. Usually, we try to isolate ' x '.

$$
\begin{aligned}
& \frac{x}{(0.100-x)(0,100-x)}=49 \\
& \frac{x}{(0.100-x)^{2}}=49 \\
& x=49(0.100-x)^{2} \\
& x=49\left(0.0100-0.200 x+x^{2}\right)
\end{aligned}
$$

${ }^{122}$ SPECIES	INITIAL CONC	CHANGE	EQUILIBRIUM CONC
PCl_{3}	$\frac{0.400 \mathrm{mul}}{4.00 \mathrm{~L}}=0.300 \mathrm{~m}$	$-x$	$0.100-x$

EQUILIBRIUM
MOLES of each species
CONCENTRATIONS at equilibrium

$$
\begin{array}{ll}
{\left[P C_{3}\right]=0.100-x=0.036 \mathrm{~m}} & \times 4.00 \mathrm{~L}=0.144 \mathrm{~mol} \mathrm{PCl}_{3} \\
{\left[\mathrm{Cl}_{2}\right]=0.100-x=0.036 \mathrm{~m}} & \times 4.00 \mathrm{~L}=0.144 \mathrm{~mol} \mathrm{Cl} \\
2
\end{array}
$$

Quick comparison of initial and equilibrium states:

$$
\begin{array}{|c}
\begin{array}{c}
0.400 \mathrm{mul} \mathrm{Pll}_{3} \\
0.400 \mathrm{mul} \mathrm{Cl}_{2} \\
0 \mathrm{mul} \mathrm{PCl}
\end{array} \\
\hline
\end{array} \xrightarrow{\mathrm{~K}_{\mathrm{c}}=49} \begin{aligned}
& 0.144 \mathrm{~mol} \\
& 0.144 \mathrm{mul} \mathrm{Cl}_{2} \\
& 0.256 \mathrm{~mol} \\
& \hline \mathrm{Pl}_{5}
\end{aligned}
$$

${ }^{122}$ An 8.00 L reaction vessel at 3900 C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) K_{c}=0.0123
$$

$$
K_{c}=0.0123=\frac{\left[N_{0}\right]^{2}}{\left[N_{2}\right]\left[O_{2}\right]}
$$

To solve this, we must express all of these concentrations in terms of one variable.

We let 'x' equal the change in concentration of nitrogen gas!

$$
\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}=\frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123
$$

We need to solve this expression for 'x' to solve this problem.

$$
\begin{aligned}
& \frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)} \\
& \sqrt{\frac{(2 x)^{2}}{(0.10625-x)^{2}}} \\
& \frac{2 x}{0.10625-x}
\end{aligned}=0.0123
$$

You can solve this by either using the quadratic equation (like the last one), or - more simply just take the square root of both sides.

$$
x=0.0055822943 \begin{aligned}
& \text { <-- Now use this value of ' } x \text { ' to find the } \\
& \text { equilibrium concentrations! }
\end{aligned}
$$

equilibrium concentrations!

Species	[Equilibrium]
N_{2}	$0.10625-x$
O_{2}	$0.10625-x$
$N o$	$2 x$

We know $K c=0.0123$, so we expect REACTANTS to dominate at equilibrium. (They do!)

- Pressure can affect a GAS-PHASE equilibrium ... sometimes. How?

$$
\left.\mathrm{CO}(g)+2 \mathrm{H}_{2} \mathrm{Cg}\right) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g)
$$

... how might pressure affect this equilibrium?

- If the change in pressure CHANGES CONCENTRATIONS, then this equilibrium would be disturbed and Le Chateleir's Principle would apply.
- Adding an INERT GAS would change pressure, but would it change concentration of the gases? NO - so addition of argon would have no effect on the equilibrium!
- What about COMPRESSION?

... compression increases pressure by DECREASING total volume.

$1 / 2 \mathrm{O}$	
CO	
H_{2}	$\square \leftarrow 2 \mathrm{P}$
$\mathrm{CH}_{3} \mathrm{OH}$	

... but this volume change affects ALL concentrations the same way. In this example, each concentration is DOUBLED.

$$
\begin{aligned}
& \left.\mathrm{CO}(g)+2 \mathrm{H}_{2} \mathrm{Cg}\right) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g) \\
& K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{CO}_{\mathrm{O}}\right]\left[\mathrm{H}_{2}\right]^{2}} \\
& \frac{(1)}{(1)(1)^{2}}=\left\lvert\, \begin{array}{l}
\text { For simplicity, } \\
\text { let's assume } \\
\text { Kc }=1, \text { and all } \\
\text { conc }=1 \mathrm{M}
\end{array}\right. \\
& \text { cons }=1 \mathrm{M} \\
& \begin{array}{l}
\text { Doubling } \\
\text { concentrations } \\
\text { gives } Q=
\end{array} \frac{2}{(2)(2)^{2}}=\frac{1}{4} \\
& Q<K_{C} \text {, so equilibrium shifts to the RIGHT, forming } \\
& \text { more methanol at the expense of hydrogen } \\
& \text { and carbon monoxide. }
\end{aligned}
$$

In general, compressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with fewer moles of gas. This causes the pressure to decrease.

In general, decompressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with more moles of gas. This causes the pressure to increase.

HOWEVER, this can only be true IF there's a side of the reaction with more moles of gas than the other. If both sides of the reaction have the SAME number of moles of gas, then a pressure change will NOT affect the equilibrium.

$$
\text { Example: } \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

... would not respond to a pressure change.
(1) TEMPERATURE (effect depends on whether reaction is endothermic or exothermic)

- Changes rate of reaction, too!
... changes Kc
(2) PRESSURE - only for gas-phase reactions which have different numbers of moles of gas on each side of the equilibrium. Otherwise, no effect.
... no change of Kc
(3) CATALYSTS - do NOT affect equilibrium, but make the equilibrium state occur more quickly.

(4) CONCENTRATION - Le Chateleir's Principle applies for changing concentrations. An equilibrium will shift to counteract a change in concentration of reactant or product.
... doesn't change Kc.

