149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

We need to calculate molarity: $M_{H C l}=\frac{m o l H C \mid}{L H C\{\text { solution }] 48,90 \mathrm{~mL}=0.04890 \mathrm{~L}}$
1 - Convert 125.0 mL of carbon dioxide gas to moles using IDEAL GAS EQUATION.
2 - Convert moles carbon dioxide gas to moles HCl using chemical equation.
3 - Calculate molarity of HCl : moles $\mathrm{HCl} /$ volume HCl solution
(1)

$$
\begin{aligned}
& n=\frac{P v}{R T} \left\lvert\, p=0.950 \mathrm{~atm} \quad R=0.08206 \frac{\text { L.atm }}{\text { mol.k }}\right. \\
& V=125.0 \mathrm{~mL}=0.1250 \mathrm{~L} T=290.2 \mathrm{~K} \\
& n_{C O_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{L.arm}}{\mathrm{~mol} / \mathrm{k}}\right)(290.2 \mathrm{k})}=0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \\
& 2 \mathrm{molhCl}=\operatorname{mol} \mathrm{CO}_{2} \\
& 0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{molHCl}}{\mathrm{~mol} \mathrm{CO}_{2}}=0.0099732038 \mathrm{mul} \mathrm{HCl} \text { (2) } \\
& M_{\text {Hel }}=\frac{\mathrm{mol} \mathrm{HCl}_{\mathrm{HCl}}}{\text { LHC\{ solution }}=\frac{0.0099732038 \mathrm{mu} H C l}{0.04890 \mathrm{~L}}=0.204 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
^ motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m v_{\text {velocity }}^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"
 related to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)
$Q: h e a t$
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS	-	increases

152

- calorie (cal): the amount of energy required to change the temperature of one gram of water by one degree Celsius (or Kelvin)

- Calories in food? The "Calorie" that is given on American food labels is actually the kilocalorie (kcal)
- Joule (J): Sl unit for energy. It's defined based on the equation for kinetic energy.

$$
\begin{aligned}
& 1 J=\frac{1 \mathrm{Kgm}^{2}}{s^{2}} \text {, from } \\
& E K=\frac{1}{2} m_{\substack{\text { kinetic } \\
\text { energy }}}^{2}
\end{aligned}
$$

$4.184 \mathrm{~J}=1 \mathrm{cal}$

- the Joule is a small unit. For most reactions at lab scale, we'll use kilojoules (kJ).

CALORIMETRY

- the measurement of heat. How do we measure heat?

... What is Q for this reaction?
Assuming that no heat is lost from the water to the surrounding air,

... if we knew something about the WATER, we could use that to find the heat of the REACTION!

SPECIFIC HEAT

- a measured quantity. The amount of energy required to change the temperature of one gram of a particular substance by one degree Celsius.
- Specific heat information for common substances is readily available. For water,

$$
Q=1.000 \frac{\mathrm{cal}}{g^{\circ} \mathrm{C}}
$$

- For objects, like reaction vessels, you might know the HEAT CAPACITY, which is the amount of energy required to change the temperature of an object by one degree Celsius

$$
\begin{gathered}
\text { Units: } \mathrm{J} / \mathrm{o}^{\circ} \mathrm{C} \text { or } \mathrm{cal} /{ }^{\circ} \mathrm{C} \\
Q=C X T \\
c=\text { heat capacity }
\end{gathered}
$$

To report the energy change in this reaction to others, we should express it in terms of heat transfer per mole of something. A different amount of reactant would have a different Q

$$
\begin{aligned}
& Q_{r \times n}=\frac{Q_{r}}{\text { mules } A}=\frac{-5439.2 \mathrm{~J}}{0.20 \text { mol } A}=-27000 \frac{\mathrm{~J}}{\mathrm{mul} A}=-27 \frac{\mathrm{~kJ}}{\mathrm{mulA}}
\end{aligned}
$$

One problem ...
PATH. The amount of energy required for a process depends on how the process is carried out.

Example: Driving from Florence to Columbia. How much energy is required? (gas) 2000 Jeep Cherokee vs 2008 Toyota Prius. The Jeep will use much more fuel than the Prius even though they start and end from exactly the same place. So the fuel usage is what we call a PATH FUNCTION, while the location is a STATE FUNCTION.

- so the heat of reaction depends on how the reaction is done.
- we need (for reporting) some kind of standard condition. At constant pressure, we can define a state function called ENTHALPY (H)

$$
\begin{gathered}
H=U+P V \\
\Delta H=Q_{\text {cunstunt pressure }}
\end{gathered}
$$

... we record the "enthalpy change of reaction" in our data books.

${ }^{158}$ SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter.

THERMOCHEMICAL EQUATIONS

- is like a regular chemical equation, except that phase labels are REQUIRED and the enthalpy for the reaction is given along with the equation.

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{l})+4 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{Ol}(\mathrm{l}) ; \mathrm{A}=-1800 \mathrm{~kJ}
$$

- Why are phase labels required? Because phase changes either absorb or release energy.
$\Delta H=-1800$ lbJ ... what does this mean?

$$
\begin{aligned}
1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COCH}_{3} & =-1800 \mathrm{~kJ} \\
4 \mathrm{mul} \mathrm{O}_{2} & =-1800 \mathrm{~kJ} \\
3 \mathrm{mulCO}_{2} & =-1800 \mathrm{~kJ} \\
3 \mathrm{mul} \mathrm{H}_{2} \mathrm{O} & =-1800 \mathrm{~kJ}
\end{aligned}
$$

We treat the enthalpy change as if it's another product of the reaction!
$\mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{H}_{3}(\mathrm{l})+4 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-1800 \mathrm{~kJ}\right.$ What would be the enthapy change when 25 g of water are produced by the reaction?
1 - Convert 25g water to moles using FORMULA WEIGHT.
2 - Convert moles water to enthalpy change using THERMOCHEMICAL EQUATION

$$
\begin{aligned}
& 18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\mathrm{mal} \mathrm{H}_{2} \mathrm{O} \mathrm{Jol} \mathrm{H}_{2} \mathrm{O}=-1800 \mathrm{~kJ} \\
& 2 \mathrm{~S}_{\mathrm{g} \mathrm{H}_{2} \mathrm{O}} \times \frac{\mathrm{mal} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}} \times \frac{-1800 \mathrm{~kJ}}{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=-830 \mathrm{~kJ}
\end{aligned}
$$

This reaction is EXOTHERMIC. Energy is released from the reaction to the surroundings.
(True for all COMBUSTION reactions!)

A few more terms related to enthalpy:

- Enthalpy of vaporization / heat of vaporization: The enthalpy change on vaporizing one mole of a substance. (from liquid to vapor)
- Enthalpy of fusion / heat of fusion: The enthalpy change when a mole of liquid changes to the solid state.

160 FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25 C and 1 atm pressure.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{CO}_{2}(\mathrm{~g}): & \left.C(\mathrm{~s}, \text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta 4=-393,5 \mathrm{kj}\right]
\end{aligned} \\
& C O(g): C(s, g \text { ruphite })+\frac{1}{2} O_{2}(g) \rightarrow C O(g) ; \Delta H=-110.5 \mathrm{~kJ}
\end{aligned}
$$

you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25 C and 1 atm is ZERO.

$$
\Delta H_{f, O}^{0} O_{2}(g)=O \mathrm{~kJ} / \mathrm{mol}
$$

- What are formation reactions good for?
... finding enthalpies for more interesting reactions!

$\left.2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2} \mathrm{Cg}\right)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=$? $\quad \stackrel{\text { From }}{\mathrm{A}-\mathrm{y},}$
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add. k

162 Hess' Law using enthalpy of formation:

$$
\begin{aligned}
\Delta H & =\sum_{\left(\mathrm{O}_{2}(\mathrm{~g})\right.} \Delta H_{f, \text { products }}-\sum \Delta H_{f_{1} \text { reactants }}^{\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})} \mathrm{O}_{2}(\mathrm{~g}) \\
\Delta H & =[4(-393.5)+2(-241.8)]-[2(226.7)+5(0)] \\
& =-2511 \mathrm{KJ}
\end{aligned}
$$

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero

See Appendix C in the textbook for enthalpy of formation data:
p A-8 to A-11

- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!

