Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1 mol gus molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

${ }^{142}$ CHEMICAL CALCULATIONS WITH THE GAS LAWS $\quad \mathrm{FW}_{\mathrm{NaHCO}_{3}}=84.007 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{4}\right)+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?

1 - Convert 25.0 g sodium bicarbonate to moles using formula weight.
2 - Convert moles sodium bicarbonate to moles carbon dioxide using chemical equation.
3 - Convert moles carbon dioxide gas to VOLUME using IDEAL GAS EQUATION.
$84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHCO}_{3} \mid 2 \mathrm{mal} \mathrm{NaHCO} 3=2 \mathrm{mal}\left(\mathrm{O}_{2}\right.$

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{NaHCO} 3 \times \frac{\mathrm{mol} \mathrm{NaHCO}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{mal} \mathrm{CO}_{2}}{2 \mathrm{mal} \mathrm{NaHCO}_{3}}=\frac{0.2975942481}{\mathrm{mal} \mathrm{CO}_{2}} \tag{2}
\end{equation*}
$$

What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)

$$
\begin{aligned}
& \text { let's use the COMBNED GAS LAW to solve this! } \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} ; \frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=V_{2} \left\lvert\, \begin{array}{l}
P_{1}=0.950 \mathrm{~atm} \\
V_{1}=7.67 \mathrm{~L} \\
T_{1}=298.2 \mathrm{~K}
\end{array} \quad P_{2}=I \mathrm{~T} \mathrm{~T}_{2}=273.2 \mathrm{~K}\right. \\
& \left.V_{2}=\frac{(0.950 \mathrm{arm})(7.67 \mathrm{~L})(273.2 \mathrm{~K})}{(298.2 \mathrm{~K})\left(1 \mathrm{ar}_{\mathrm{m}}\right)}=6.6\right) \mathrm{LCO} \text { COSTs }
\end{aligned}
$$

Alternate solution: Since we know the number of moles of gas in the previous problem, you could plug into the ideal gas equation with the new conditions. (You'll get the same answer that we got here!)

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{HW}_{\mathrm{NH}_{4} \mathrm{NO}_{3}}=80.0434 \mathrm{~g} / \mathrm{mol}
$$

At $300^{\circ} \mathrm{C}$, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 50.0 grams of ammonium nitrate?

To simplify the problem a bit, we will calculate the TOTAL MOLES OF GAS instead of calculating each gas separately.
1 - Convert mass ammonium nitrate to moles using FORMULA WEIGHT.
2 - Convert moles ammonium nitrate to TOTAL MOLES OF GAS using chemical equation.
3 - Convert TOTAL MOLES OF GAS to volume using IDEAL GAS EQUATION
$80.0434 \mathrm{y}^{\mathrm{NH}_{4} \mathrm{NO}_{3}=\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}} 22 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}=7 \mathrm{~mol}$ gas $(2+1+4)$

$$
50.0 \mathrm{~g} \mathrm{NH} 4 \mathrm{NO}_{3} \times \frac{\mathrm{mul} \mathrm{NHyNO}_{3}}{80.0434 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}} \times \frac{7 \mathrm{~mol} \mathrm{gas}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}=2.18631392 \mathrm{~S}_{\mathrm{mol} \text { gas }}
$$

(1) (2)

$$
\begin{aligned}
& \text { (3) } V=\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
n=2.186313925_{\mathrm{mol}} \mathrm{gas} & T=300^{\circ} \mathrm{C}=573 \mathrm{~K} \\
R=0.08206 \frac{\mathrm{Lankm}}{\mathrm{moloth}} & P=1.00 \mathrm{atcm}
\end{array}\right. \\
& V=\frac{(2.186313925 \mathrm{molgas})\left(10.08206 \frac{\text { atm }}{\text { mol. } \mathrm{Cr}}\right)(573 \mathrm{~K})}{(1.00 \text { art })}=103 \mathrm{~L} \mathrm{gas}
\end{aligned}
$$

145 REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules
slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
${ }^{146}$ van der Waal equation
- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T \text { Ideal gas equation } \\
& \left.\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T\right] \begin{array}{l}
\text { van der Wails } \\
\text { equation }
\end{array} \\
& \text { attempts to account for molecular size }
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. 1208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0.08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
${ }^{147} 25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert volume chlorine gas to moles using IDEAL GAS EQUATION
2 - Convert moles chlorine gas to moles HCl using chemical equation.
3 - Convert moles HCl to mass using formula weight.

$$
\begin{aligned}
& \text { (1) } P V=n R T \mid P=1.00 \text { atm } \quad R=0.08206 \frac{\text { L.atm }}{\text { mol. }} \\
& n=\frac{P V}{R T} \quad V=2500 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{C l_{2}}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \text {.atm }}{\mathrm{mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol}\left(1_{2}\right. \\
& \begin{array}{l|l|l|}
\mathrm{mol} \mathrm{Cl}_{2}=2 \mathrm{molHCl} & \left.\begin{array}{l}
\mathrm{H}: 1 \times 1.008 \\
C 1: \frac{1 \times 35.45}{36.458} \mathrm{gHCl}=\operatorname{mol~HCl}
\end{array} \right\rvert\,
\end{array} \\
& =10^{3} \mathrm{~g} \\
& 102.1646983 \mathrm{~mol} \mathrm{Cl}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\operatorname{molHCl}} \times \frac{\mathrm{Kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{HgHCl}
\end{aligned}
$$

148
Calculate the mass of $226 \stackrel{*}{5}^{\circ} \mathrm{L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\hat{\mathrm{N}} \mathrm{O}_{2}
$$

*Volume of a 10'x10'x8'
1 - Find moles of oxygen gas using ideal gas equation.
2 - Convert moles oxygen gas to mass using formula weight.

$$
\begin{aligned}
& \text { (1)PV=nRT } \left\lvert\, P=1.18 \mathrm{arm} \quad R=0.08206 \frac{\mathrm{~L} \text {-arm }}{\mathrm{mul} . \mathrm{hr}}\right. \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=22650 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{O_{2}}=\frac{(1.18 \mathrm{arm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\text { (-atm }}{\mathrm{mul} \cdot \mathrm{bv}}\right)(298.2 \mathrm{Kr})}=1092.222357 \mathrm{mul} \mathrm{o} \\
& 32.00 \mathrm{~g} \mathrm{O}=\mathrm{mal} \mathrm{O}_{2} \\
& 1092.222357 \mathrm{mul} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=35000 \mathrm{~g} \mathrm{O}_{2} \sim 77 \mathrm{mb}
\end{aligned}
$$

