Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{aligned}
& 55.85 \mathrm{gFe}=\mathrm{molFe} \\
& 1.7 \mathrm{SmolFe} \times \frac{55.8 \mathrm{~S} \mathrm{gee}}{\mathrm{~mol} \mathrm{Fe}}=97.7 \mathrm{gFe}
\end{aligned}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
H_{2} \mathrm{O}: \quad H: 2 \times 1.008 & =2.016 \\
O: 1 \times 16.00 & =\frac{16.00}{18.0161}
\end{aligned}
$$

$$
18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\mathrm{mal} \mathrm{H}_{2} \mathrm{O} \quad \text { FORMULA WEIGHT is the mass of one mole }
$$ of either an element OR a compound.

$$
25.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H} \mathrm{O}}=1.39 \mathrm{mul} \mathrm{H}_{2} \mathrm{O}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

90 Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

Find the formula of ammonium carbonate!

$$
\left.\frac{\mathrm{NH}_{4}^{+} \mathrm{CO}_{3}^{2-}}{\mathrm{NH}_{4}^{+}} \mathrm{(NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

Once you've found the formula, you can find the formula weight:

$$
N: 2 \times 14.01
$$

$$
H: 8 \times 1.008
$$

ci l 1×12.01
$0: \frac{3 \times 16.00}{96.094}$
$96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
3.65 mol $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\operatorname{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=$

$$
=3 \mathrm{SIg}_{\mathrm{g}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3}: \mathrm{N}: 2 \times 14.01=28.02 \mathrm{~K} \\
& H: 4 \times 1.008=4,032 \longleftarrow \text { These numbers are the masses of each } \\
& 0: 3 \times 16.00=\frac{48.00}{80.052} \mathrm{gNH}_{4} \mathrm{NO}_{z}=1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \begin{array}{l}
\% \mathrm{~N}: \frac{28.02 \mathrm{~g} \mathrm{~N}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=35.0 \% \mathrm{~N} \\
\% \% \mathrm{l} \begin{array}{l}
\text { Check: Make } \\
\text { sure all the } \\
\text { percentages } \\
\text { sum to 100\%- } \\
\text { within } \\
\text { roundoff } \\
\text { error... }
\end{array} \\
\% . \frac{4.032 \mathrm{~g} \mathrm{H}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=5.0 \% \mathrm{~V}=\frac{48.00 \mathrm{~g} \mathrm{o}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=60.0 \% \mathrm{~K}
\end{array}
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution
dissolved substance

$$
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { SOLUTION }}
$$

$6,0 \mathrm{M} \mathrm{HCl}$ solution:
(read aloud as "six molar")
If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
6.0 \mathrm{~mol} 1 \mathrm{HCl}=L
$$

$$
0.250 L \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{mul} \mathrm{HCl}
$$

*See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162-9th edition) (p 156-164-10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
0.05 S 5 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{11.8 \mathrm{~L}}{11800 \mathrm{~mL}}
$$

This is too large a volume for lab-scale work. To get a more reasonable volume, we should use a more concentrated solution!

What if we used 6.00 M HCl ?

$$
6.00 \mathrm{~mol} H C=L
$$

$$
0.657 \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{mul} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 \mathrm{~mL}}
$$

110. mL is a more reasonable volume for lab-scale work. Easily measured with our lab equipment.

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

> volumetric flask

We know that we need 500 mL of solution, and we also know that the concentration should be 0.500 moles of sodium sulfate per liter. How many moles of sodium sulfate should there be in 500 mL ? Then, change to mass.

$$
\begin{aligned}
& 0.500 \mathrm{~mol} \mathrm{Naz} \mathrm{SO}_{4}=L \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \quad 142.0 \mathrm{~S}_{\mathrm{g}} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

So, to prepare the solution, put 35.5 grams sodium sulfate into a 500 mL
volumetric flask, then fill the flask to the line with distilled (or deinonzed) water.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} \backslash / 2 \ldots \text { the "DILUTION EQUATION" } \\
& M_{1}=\text { molarity of concentrated solution } \\
& V_{1}=\text { volume of concentrated solution } \\
& M_{2}=\text { molarity of dilute solution } \\
& V_{2}=\text { volume of dilute solution (total vow me, nut volume af } \\
& \text { added solvent r!) }
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
M_{1} V_{1} & =m_{2} V_{2} \\
(0.500 \mathrm{~m}) V_{1} & =(0.333 \mathrm{~m})(150 . \mathrm{mL}) \\
V_{1} & =99.9 \mathrm{~mL} 050.500 \mathrm{MNa}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

To make the solution, measure out 99.9 mL of the 0.500 M stock solution into a 150 mL volumetric flask, then dilute to the mark with distilled water. (If no flask is available, you can do the same thing with a large graduated cylinder.)

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{aligned}
& \text { invert grams of bromine to moles: Need formula weight } B r_{2}=\frac{2 \times 79.90}{159.80} \\
& 159.80 \mathrm{~g} r_{2}=1 \text { mol } B r_{2}
\end{aligned}
$$

$$
25.0 \mathrm{~g} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} A 1=3 \mathrm{~mol} B_{r_{2}}$

$$
0.15645 \mathrm{~mol} B_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} \mathrm{Br}}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al} \\
& 0.1043 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

