${ }^{146}$ van der Waal equation

- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T \text { Ideal gas equation } \\
& \left.\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T\right] \begin{array}{l}
\text { van der Wails } \\
\text { equation }
\end{array} \\
& \text { attempts to account for molecular size }
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. 1208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0.08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
${ }^{147} 25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500L chlorine gas to moles using IDEAL GAS EQUATION.
2 - Convert moles chlorine gas to moles HCl using chemical equation.
3 - Convert moles HCl to mass using FORMULA WEIGHT. (Also, g -> kg conversion)

$$
\begin{aligned}
& \text { (1) } P V=n R T \mid P=1.00 \mathrm{~atm} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n=\frac{P V}{R T} \quad V=2500 \mathrm{~L} \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& n_{C_{1}}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol} \mathrm{Cl} 2
\end{aligned}
$$

Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure.
NO_{2}
1 - Calculate moles oxygen gas using ideal gas equation.
2 - Convert moles oxygen gas to mass using formula weight.
*Volume of a 10'x10'x8' room

$$
\begin{aligned}
& \text { (1) PV } \quad \text { oRT } \quad P=1.18 \mathrm{~atm} \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{mul} . \mathrm{h}} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=22650 \mathrm{~L} T=25.0^{\circ} \mathrm{C}=2 \% .2 \mathrm{~K} \\
& \left.n_{0_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} . \mathrm{tr}}\right)(298.2 \mathrm{k})}=1092.22235\right) \mathrm{mol} \mathrm{O} \\
& 32.00 \mathrm{gO}_{2}=\mathrm{mul} \mathrm{O} \\
& 1092.22235) \mathrm{mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{mulo}}=35000 \mathrm{~g} \mathrm{O}_{2} \sim 77 \mathrm{lb}
\end{aligned}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

We need to find $M_{\text {MCI }}=\frac{\text { mol MCI }}{\mathrm{LHCl} \text { solution }} \leqslant 48.90 \mathrm{~mL}=0.04890 \mathrm{~L}$
1 - Convert 125.0 mL of carbon dioxide gas to moles using ideal gas equation
2 - Convert moles carbon dioxide to moles HCl using chemical equation.
3 - Calculate molarity of HCl by dividing moles $\mathrm{HCl} /$ volume $\mathrm{HCl}(0.04890 \mathrm{~L})$

$$
\begin{aligned}
& \text { (1) } \\
& \begin{array}{l|l}
n=\frac{P V}{R T} & P=0.950 \mathrm{~atm} \\
V=125.0 \mathrm{~mL}=0.125 \mathrm{LL}
\end{array} \\
& R=0.08206 \frac{\mathrm{Lahm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& T=290.2 \mathrm{~K} \\
& n_{\mathrm{CO}_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{L-atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(290.2 \mathrm{~K})}=0.0049866019 \mathrm{~mol} \mathrm{Co} \\
& \mathrm{~mol} \mathrm{CO}_{2}=2 \mathrm{~mol} \mathrm{HCl} \\
& 0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{mul} \mathrm{HCl}}{\mathrm{mulCO}}=0.0099732038 \mathrm{mul} \mathrm{HCl} \text { (2) } \\
& m_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{\mathrm{LHCl} \text { solution }}=\frac{0.0099732038 \mathrm{mulHCl}}{0.04890 \mathrm{~L}}=0.203 \mathrm{mHCl}
\end{aligned}
$$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
^ motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m v_{\text {velocity }}^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"
\uparrow related to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)
$Q: h e a t$
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS	-	increases

