CHM 110-01 - Summer 2013 - In-Class Practice Work
Write your names in the blanks below:
\qquad , \qquad
Solve the problem, and show your work on the page below.

1) What volume of hydrogen gas at $125^{\circ} \mathrm{C}$ and 1.05 atm pressure would be required to provide 1550 kJ of heat via the following reaction?

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \quad \Delta H=-484 \mathrm{~kJ}
$$

Answer: \qquad $\mathrm{L} \mathrm{H}_{2}$

$$
\begin{aligned}
& 2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}=-484 \mathrm{~kJ} \\
& -1550 \mathrm{~kJ} \times \frac{2 \mathrm{mul} \mathrm{~h}}{-484 \mathrm{hJ}}=6.404958678 \mathrm{~mol} \mathrm{H}_{2} \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{l}
n=6.404958678 \mathrm{~mol} H_{2} \quad T=125^{\circ} \mathrm{C}=398 \mathrm{~K} \\
R=0.08206 \frac{L-\mathrm{arm}}{\mathrm{mul} \cdot \mathrm{Wr}} \quad P=1,0 \mathrm{Catm}
\end{array}\right. \\
& \left.V=\frac{(6.404958678 \mathrm{~mol} \mathrm{H}}{2}\right)\left(0.08206 \frac{\mathrm{larm}}{\mathrm{mul} \cdot \mathrm{Wr}}\right)(398 \mathrm{hr}) \\
& =199.223982684 \mathrm{~L} \mathrm{H}_{2}
\end{aligned}
$$

CHM 110-01 - Summer 2013 - In-Class Practice Work
Write your names in the blanks below:
\qquad , \qquad
Solve the problem, and show your work on the page below.
2) What is the enthalpy change on burning 175 g of ammonia, NH_{3}, in the following reaction?

$$
\begin{aligned}
& 17.034 \\
& 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \quad \Delta H=-1267 \mathrm{~kJ}
\end{aligned}
$$

Answer: -3250 kJ

$$
\begin{aligned}
& 17.034 \mathrm{~g} \mathrm{NH}_{3}=\mathrm{mol} \mathrm{NH}_{3} \quad 4 \mathrm{~mol} \mathrm{NH} \\
& 3
\end{aligned}=-1267 \mathrm{~kJ}
$$

CHM 110-01 - Summer 2013 - In-Class Practice Work

Write your names in the blanks below:

SOLUTIONS

 , \qquad , \qquadSolve the problem, and show your work on the page below.
3) What mass of TiO_{2} solid would (given enough carbon and chlorine) be required to produce 375 L of CO_{2} gas at $525^{\circ} \mathrm{C}$ and 1.25 atm in the following reaction?

$$
\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\operatorname{mol} \mathrm{CO}_{2}: \text { mol } \mathrm{T}_{1} \mathrm{O}_{2} \quad 79.87 \mathrm{~g}_{1} \mathrm{OO}_{2}=\operatorname{mol} \mathrm{TiO}_{2}
$$

$$
7.158250244 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{\mathrm{mol} \mathrm{TiO}_{2}}{\mathrm{~mol} \mathrm{co}_{2}} \times \frac{79.8 \mathrm{~g} \mathrm{TiO}_{2}}{\mathrm{~mol} \mathrm{~T}_{1} \mathrm{O}_{2}}=\frac{571.729447003}{\mathrm{~g} \mathrm{TiO}}
$$

CHM 110-01 - Summer 2013 - In-Class Practice Work
Write your names in the blanks below:
SOLUTIONS \qquad ,

Solve the problem, and show your work on the page below.
4) What volume (in mL) of 6.00 M HCl solution would be required to produce $55.0 \mathrm{~L}^{\text {of } \mathrm{CO}_{2} \text { gas at }}$ 0.975 atm and $27.0^{\circ} \mathrm{C}$ in the following reaction? Assume there is sufficient sodium carbonate

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(\mathrm{~g})
$$

Answer:

$$
726
$$ mL of 6.00 M HCl

$$
\begin{aligned}
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
P=0.975 \mathrm{~atm} V=85,0 \mathrm{~L} \\
T=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K}
\end{array} \quad R=0.08206 \frac{\mathrm{harm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right. \\
& n_{\mathrm{CO}_{2}}=\frac{(0.975 \mathrm{~atm})(55,0 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{laam}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(300.2 \mathrm{~K})}=2.17683296 \mathrm{~mol} \mathrm{CO}_{2} \\
& 2 \mathrm{molHCl}=\mathrm{molCO}_{2} \quad 6.00 \mathrm{mulHCl}=\mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 2.17683296 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{CO}_{2}} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3 \mathrm{~L}}}=725.610986777
\end{aligned}
$$

CHM 110-01 - Summer 2013 - In-Class Practice Work
Write your names in the blanks below:
SOLUTIONS \qquad , \qquad
Solve the problem, and show your work on the page below.
5) What volume of ammonia gas is produced at STP from the reaction of 25.0 g of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ with sufficient water in the following reaction?

$$
\begin{aligned}
& 100.9 \mathrm{~S} \\
& \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

Answer: \qquad LNH_{3}

$$
\begin{aligned}
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
n=0.4952947 \mathrm{molNH} & R=0.08206 \frac{\mathrm{hatm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
T=0^{\circ} \mathrm{C}=273.15 \mathrm{~N} & P=1.00 \mathrm{arm}
\end{array}\right. \\
& V=\frac{(0.4952947 \mathrm{~mol} \mathrm{NH})(0.08206 \mathrm{hatm}}{\mathrm{mol} \cdot \mathrm{~K})(273.15 \mathrm{~K})} \\
& (1.00 \mathrm{arm})
\end{aligned}
$$

$$
=11.101876672 \mathrm{~L}
$$

$$
\begin{aligned}
& 100.9 \mathrm{~g}_{\mathrm{g}} \mathrm{mg}_{3} \mathrm{~N}_{2}=\operatorname{mol} \mathrm{mg}_{3} N_{2} \quad 2 \bmod \mathrm{NH}_{3}=\operatorname{mol}^{2} \mathrm{mg}_{3} \mathrm{~N}_{2}
\end{aligned}
$$

CHM 110-01 - Summer 2013 - In-Class Practice Work
Write your names in the blanks below:
\qquad ,

Solve the problem, and show your work on the page below.
6) Using standard enthalpies of formation (see your textbook), calculate the enthalpy change ΔH^{o} for the reaction below, as written:

$$
\begin{array}{ccc}
-74.87 & 0 & -110.5
\end{array}
$$

Answer: $\Delta H^{\circ}=$ \qquad

$$
\left.\Delta H^{\circ}=[2(-110.5)+4(0)]-[2(-74.8))+1(0)\right]
$$

$$
=-71,26 \mathrm{~kJ}
$$

