165
$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed when sodium acetate dissolves.
Na': Not a B-L acid (no H to donate). Not likely to be a B-L base, since it's a positively charged alkali metal ion.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$: Has hydrogen atoms, but not likely to be an acid. It's got a negative charge and the hydrogen atoms are bonded to carbon rather than oxygen. It's ,more likely be a base - a proton acceptor!

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underbrace{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}_{\text {Acetic acid. Since acetic acid is a WEAK ACID. }}+\mathrm{OH}^{-} \\
& \text {it's stable in water. We expect the ACETATE ION } \\
& \text { to function as a base. } \\
& N_{b_{1} C_{2} H_{3} O_{2}}=\frac{\left[H C_{2} H_{3} O_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} H_{3} \mathrm{O}_{2}^{-}\right]} \\
& \mathrm{Kb} \text { for acetate ion is not available in } \\
& \text { the chart on page A-14 ... BUT } \\
& \text { we can find the Ka for acetic } \\
& \text { acid - its conjugate - on the } \\
& K a_{,} H C_{2} b_{3} 讠_{q}=1.7 \times 10^{-5}, K_{n} K b=1.0 y / 0^{-14}, h_{b}=5.88 \times 10^{-10}
\end{aligned}
$$

166

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}_{1} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10} \\
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
\end{aligned}
$$

Species	$[$ In, tin $]$	Δ	$\left[E_{\text {quilibrium }}\right]$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+X$	X
OH^{-}	0	$+X$	X
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$	0.100	$-X$	$0.100-x$
$\frac{X^{2}}{}=5.88 \times 10^{-10}$	$X=7.67 \times 10^{-6}=\left[0 \mathrm{OH}^{-}\right]$		

We need pH, but we have the HYDROXIDE concentration!

$$
p O H=-\log _{10}\left(7.67 \times 10^{-6}\right)
$$

pow $=5.12$

Convert to pH:

Compare:
$\mathrm{pH}=7.00$ for pure distilled water
$\mathrm{pH}=11.12$ for $0.100 \mathrm{M} \mathrm{ammonia} \mathrm{(weak} \mathrm{base)}$
$\mathrm{pH}=13.00$ for 0.100 M NaOH (strong base)

168

$$
\begin{aligned}
& \text { O. } 100 \mathrm{M} \mathrm{NaCl}, \text { Find } \mathrm{pH} \\
& \mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed to see if they're acidic or basic:
$\mathrm{Na}^{+}{ }^{+}$: $\begin{aligned} & \text { Not a B-L acid (no H to donate), and unlikely to ne a B-L base due to it } \\ & \text { being a small, positively charged alkali metal. }\end{aligned}$ being a small, positively charged alkali metal.

C 1^{-}, Not a B-L acid (no H to donate), but may be a B-L base

$$
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underbrace{\mathrm{HCl}}_{\text {Hydrochloric acid }}+\mathrm{OH}^{-}
$$

it doesn't exist as a stable molecule in water.
So, CHLORIDE ION must not function as a base - it's not a good proton acceptor.

Since neither sodium ion nor chloride ion affect the pH , the pH is set by the water equilibrium. The pH will be 7.00 (just as it would be for distilled water)

169 POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a 3}=4.8 \times 10^{-13}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}_{1}=6.9 \times 10^{-3} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	[Initial]	D	[Equilibrium]
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.20-x$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
x^{2}			

$$
\left.\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \begin{array}{l}
\text { This time, we'll solve the quadratic equation. We're not quite } \\
\text { as confident that ' } x \text { '< }<0.10 \text { as we were in previous examples. } \\
\text { (The equilibrium constant is a good bit larger here!) }
\end{array} \\
& x^{2}=0.00069-0.0069 x
\end{aligned} \right\rvert\, \begin{aligned}
& x=\frac{-0.0069 \pm 0.0529868852}{2} \\
& x^{2}+0.0069 x-0.00069=0
\end{aligned}
$$

$$
\begin{gathered}
x^{2}=0.00069-0.0069 x \\
x^{2}+0.0069 x-0.00069=0 \\
a=1 \quad b=0.0069 \quad c=-0.00069 \\
x=\frac{-0.0009 \pm \sqrt{(0.0069)^{2}-4(1)(-0.00069)}}{2(1)}
\end{gathered}
$$

Discard the negative root. 'x' cant be less than zero (it's equal to two of the concentrations!)

$$
\begin{aligned}
& \text { concentrations! } \\
& x=0.0230=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=1.64
\end{aligned}
$$

${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250. mL of solution.

$$
\begin{aligned}
& \text { Find out the nature of this salt: } \\
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is a STRONG ACID, so } \\
\text { NTRATE ION will be neutral. }
\end{array} \\
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{U}^{+} \begin{array}{l}
\text { AMMONIA is a WEAK BASE, } \\
\text { so AMMONIUM ION is ACIDIC! }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } h_{a} \cdot h_{b}=1.0 \times 10^{-14} \\
& K_{a_{1 N G H}}+5.56 \times 10^{-10}
\end{aligned}
$$

$\mathrm{Ka}_{\mathrm{a}_{1} \mathrm{WH} H_{4}^{+}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH} H_{4}^{+}\right]}=5.56 \times 10^{-10}$

$S_{\text {pecles }}$	[Initial]	Δ	$\left[E_{q \text { qi] }}\right]$
NH_{3}	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
$\mathrm{NH}_{4}{ }^{+}$	0.14990	$-x$	$0.14990-x$

Calculate molar concentration of ammonium nitrate:

$$
\begin{aligned}
& 3.00 \mathrm{yNH}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{mul}}{80.052 \mathrm{~g}}= \\
& =0.374756408 \mathrm{~mol} \\
& \frac{0.374756408 \mathrm{~mol}}{0.2502}= \\
& =0.1499025633 \mathrm{~m} \\
& \mathrm{NH}_{4} \mathrm{NU}_{3} \mathrm{~m}
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& x=9,13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=5.04
\end{aligned}
$$ an acidic salt.

THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ss}) \rightarrow \mathrm{NH}_{4}{ }^{+}\left(\mathrm{aqq}_{q}\right)+\mathrm{Cl}^{-}(\mathrm{aq})$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

Calculate the pH of a solution which contans 0.10 M ammonia AND 0.10 M ammonium chloride.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} ; \mathrm{H}_{3}=1.8 \times 10^{-\mathrm{S}}
$$

Species	$[$ Initial $]$	Δ
NH_{4}^{+}	0.10	$+x$
$0 H^{-}$	0	$+x$
NH_{3}	0.10	$-x$
$\frac{(0.10+x)(x)}{(0.10-x)}=1.8 \times 10^{-5}$		

$$
\begin{gathered}
\frac{(0.10+x)(x)}{(0.10-x)}=1.8 \times 10^{-5} \\
\text { Assume } x \text { is small compared } \\
\text { to } 0.10 \\
0.10+x \approx 0.10 \\
0.10-x \approx 0.10 \\
\frac{0.10 x}{0.10}=1.8 \times 10
\end{gathered}
$$

$$
\begin{aligned}
& x=1.8 \times 10^{-5}=\left[0 H^{-}\right] \\
& p O H=-1 g_{10}\left(1.8 \times 10^{-5}\right)=4.74
\end{aligned}
$$

$$
p H=9.26
$$

The common-ion effect supresses the ionization of ammonia, LOWERING the pH relative to the original ammonia solution!

