An aqueous solution of 0.25 M trimethylamine has a pH of 11.63 . What's the experimental value of Kb ?

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}
$$

$$
\begin{gathered}
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-} \\
K_{3}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=? ? ?
\end{gathered}
$$

$$
K_{b}=\frac{x^{2}}{0.25-x} \quad \begin{aligned}
& \text { li we want to learn the value of } \\
& \text { kb, we need to find some other } \\
& \text { way (other than the equation here) } \\
& \text { to find the value of } x \text { ' }
\end{aligned}
$$

159

$$
\left.\begin{array}{l}
K_{b}=\frac{x^{2}}{0.25-x} \quad \begin{array}{l}
\text { We know that' 'x equals the HYDROXIDE ION } \\
\text { CONCETRATIN (see the chart on the previous } \\
\text { page) }
\end{array} \\
\rho H=11.63 ; \rho H+p O H=14.00 \\
\rho O H=2.37
\end{array}\right]\left[\mathrm{OH}^{-}\right]=10^{-2.37}=0.0042657952=x
$$

Now, plug 'x' into the equilibtrium expression

$$
\begin{aligned}
& K_{b}=\frac{x^{2}}{0.25-x}=\frac{(0.0042657952)^{2}}{0.25-0.0042657952} \\
& K_{b}=7.4 \times 10^{-5}
\end{aligned}
$$

SALTS

- Compounds that result from the reaction of an acid and a base.
- Salts are strong electrolytes (completely dissociate in water) IF SOLUBLE (not all salts dissolve appreciably).
- Most ionic compounds are considered salts (they can be made by some reaction between the appropriate acid and base)
- Salts have acidic and basic properties! The ions that form when salts are dissolved can be acidic, basic, or neutral.
- Salts made from WEAK ACIDS tend to form BASIC solutions
- Salts made from WEAK BASES tend to form ACIDIC solutions

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}: \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-}
$$

Do any of these ions have acidic or basic properties?
Na^{+}: neutral. Not a proton donor or a proton acceptor
$\mathrm{CO}_{3}{ }^{2-}$: in in solution. since it can accept protons to form the weak acid CARBONIC ACID - in solution.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{CO}_{3}^{-2}
$$

ex: $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

For this reaction to occur, HA MUST be stable in water. In other words, a weak acid.
\qquad The anion is a BASE. It can accept a proton from water to form the weak (therefore stable as a molecule!) acid HA

$$
\left.K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]} \right\rvert\, \text {This is the base ionization constant for } A^{-}
$$

Since \bar{A} and HA are a conjugate pair, the ionization constants are related! You will generally not find both

$$
\begin{aligned}
& K_{w}=\left(K_{a, H A}\right)\left(K_{b, A^{-}}\right) \\
& 1.0 \times 10^{-14} \\
& \quad L_{1}=p K_{n}+p K_{b}
\end{aligned}
$$ can be easily converted to the other!

SALT OF A WEAK BASE

ex: $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{aligned}
& \mathrm{BHCl} \longrightarrow \mathrm{BH}^{+}+\mathrm{Cl}^{-} \mathrm{I}^{-} \text {The salt dissociates completely! }
\end{aligned}
$$

$$
\begin{aligned}
& \left.K_{a}=\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]} \right\rvert\, \text {Acid ionization constant for } \mathrm{BH}^{+} \\
& \underset{1,0 \times 10^{-1 / 4}}{k w}=\left(K_{a, B H_{t}}\right)\left(K_{b, B}\right)
\end{aligned}
$$

Find the pH for salt solutions just like you would find pH for any other weak acid or weak base solutions. Only trick is to find out whether the salt is actually acidic or basic!
$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$... Find the pH of the solution

$$
\begin{gathered}
\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}_{4}^{-} \\
\mathrm{NH}_{4}^{+}: \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{NH}_{3}}{ }+\mathrm{H}_{3} \mathrm{H}^{+}
\end{gathered} \begin{aligned}
& \text { This is the WEAK BASE ammonia. Stable } \\
& \text { in water. }
\end{aligned}
$$

(The conjugate of a strong acid or base is neutral (it doesn't affect the pH)
We need to solve THIS equilibrium:

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} \leftarrow \mathrm{H}_{3} \mathrm{O}^{+} \quad \begin{aligned}
& \text { This equilibrium is the only one of the } \\
& \text { two above that can affect } \mathrm{pH}
\end{aligned}
$$

164

$$
\begin{array}{l|l}
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} \leftarrow \mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{Ka}_{1, \mathrm{NH}_{4}+}{ }^{+}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} & \begin{array}{l}
\text { We can get } \mathrm{Ka} \text { by first getting the } \mathrm{Kb} \\
\text { for the conjugate (ammonia): } \\
\mathrm{K}_{b_{1}, \mathrm{NH}_{3}=1.8 \times 10^{-5}} \\
\mathrm{Ka}_{a} \times \mathrm{K}_{1 b}=1.0 \times 10^{-14} \\
\mathrm{So}_{1} \mathrm{Ka}_{\mathrm{a}, \mathrm{NH}_{4}}+=5.56 \times 10^{-10}
\end{array}
\end{array}
$$

Species	$[$ Initial $]$	Δ	$[$
NH_{3}	0	$+X$	
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	
NH_{4}^{+}	0.100	$-X$	
$\frac{x^{2}}{(0.106-x)}=5.56 \times 10^{-10}$			
	$x<60.100$ $0.100-x$		
$\frac{x^{2}}{0.100}=5.56 \times 100$			

Compare:
$\mathrm{pH}=1.00$ for 0.100 M strong acid $\mathrm{pH}=2.16$ for 0.100 M nitrous acid (weak acid) $\mathrm{pH}=7.00$ for distilled water

