${ }^{156}$ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO

$$
\begin{aligned}
& \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-} \quad \mathrm{Ka}_{a}=1.7 \times 10^{-4} \\
& \left.K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}\right]}{\left[\mathrm{H}_{[\mathrm{HO}}^{2}\right]}\right]=1.7 \times 10^{-4}
\end{aligned}
$$

Constant's value at 25C was obtained from the chart in Ebbing on page A-13

Species	[Initial $]$	Δ	$\left[E_{\text {quilibrium }]}\right.$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
CHO_{2}^{-}	0	$+X$	X
HCHO_{2}	0.10	$-x$	$0.10-X$

$$
\begin{aligned}
& \frac{(x) f(x)}{0.10-x}=1.7 \times 10^{-9} \\
& \frac{x^{2}}{0.10-x}=1.7 \times 10^{-4}
\end{aligned}
$$

157

$$
\begin{aligned}
& \frac{x^{2}}{0.10-x}=1.7 \times 10^{-4} \\
& 1, x<c 0.10 \\
& \frac{x^{2}}{0.10}=1.7 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& x=0.0041231056=\left[H_{3} 0^{+}\right] \\
& P H=-\log _{10}(0.0041231056) \\
& P H=2.38
\end{aligned}
$$

DEGREE OF IONIZATION is the fraction of a weak acid or base that ionizes in water:

$$
\begin{aligned}
& \frac{\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{HO}_{2}\right]_{\text {Initin }}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCHO}_{2}\right]_{\text {Initial }}}=\frac{0.0041231056}{0.10} \\
& =0.041=0.0 . I .
\end{aligned}
$$

Sometimes, we express this as PERCENT IONIZATION

$$
\%=0.0 . I \times 100 \%=4.1 \% \text { lunized }
$$

Check in experiment 16A: A more dilute solution of acid should have a HIGHER degree of ionization than a more concentrated one due to Le Chateleir's principle (you're adding water - a reactant - by diluting). This is true EVEN THOUGH THE PH WILL INCREASE in the diluted solution!

