For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{A}^{-} \\
& \left.\quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{b} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

150
Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \left.\mathrm{Ka}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HHO}_{2}\right]}=4 . \mathrm{S}_{\times 10^{-4}} \right\rvert\, \begin{array}{l}
\text { Values for Ka, like other } \\
\text { equilibrium constants, are } \\
\text { determined experimentally }
\end{array}
\end{aligned}
$$

What is the pH of the solution?
See pages A-13 and A-14 in your textbook for values for Ka (or use the internet)
To find the pH , we need to find the hydronium ion concentration: $\left[\mathrm{H}_{3} \mathrm{o}^{+}\right]$... so we need to solve the equilibrium expression. We don't know all the equilibrium concentrations, so we try to express them all in terms of a single variable.

SPECIES	INITIAL CONCENTRATION	CHANGE	EQUILIBRIUM CONCENTRATION
$\mathrm{H}_{3} \mathrm{O}^{+}$	ϱ	$+X$	X
NO_{2}^{-}	0	$+X$	X
HNO_{2}	0.100	$-X$	$0.100-X$

We assume that the amount of hydronium from the water is small enough to ignore!

Solve in a similar manner to a chapter 14 equilibrium problem!

$$
4.5 \times 10^{-4}=\frac{(x)(x)}{(0.100-x)}
$$

151

$$
\begin{aligned}
& 4.5 \times 10^{-4}=\frac{(x)(x)}{(0.100-x)} \\
& 4.5 \times 10^{-4}=\frac{x^{2}}{0.100-x} \\
& 4.5 \times 10^{-4}=\frac{x^{2}}{0.100} \begin{array}{l}
\text { IF 'x is small rel } \\
0.100-x \text { approx }
\end{array} \\
& 4.5 \times 10^{-5}=x^{2} \\
& 6.71 \times .10^{-3}=x=\left[H_{3} 0^{6}\right]
\end{aligned}
$$

Quadratic equation:

$$
a x^{2}+b x+c=0
$$

$$
x=-b \pm \sqrt{b^{2}-4 a c}
$$

IF 'x' is small relative to 0.100 , then 0.100 - x approximately equals 0.100
$0.160-4 \approx 0.100$

How do we know if it's safe to assume x is small? The assumption is generally safe when the initial concentration and the value of Ka or Kb differ be about a factor of 1000 .

Solving the quadratic gives an answer of 2.188 (2.19), which is not very different from the answer we get with our approximation.

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a stop acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}- \\
\mathrm{O}_{2} 10 \mathrm{MHNO},\left[\mathrm{H}_{3} \mathrm{OH}^{+}\right]=0.10 \\
\mathrm{PH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{153}$ Consider an 0.100 M solution of the weak base ammonia:

$$
N H_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5}(p \mathrm{~A}-14,6 b b \mathrm{ng} 9 \underline{2})
$$

What is the pH ?

$$
\begin{aligned}
& \text { the pH? } \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}
\end{aligned}
$$

We need to solve this, BUT which one of these terms are we most interested in?

We will solve for HYDROXIDE concentration, since it's closely related to hydronium - and can be easily converted.

SPECIES	INITIAL CONCENTRATION	CHANGE	EQUILIBRIUM CONCENTRATION
NH_{4}^{+}	O	$+X$	X
OH^{-}	O	$+X$	X
NH_{3}	0.100	$-X$	$0.100-x$

Putting these into the equilibrium expression...

$$
\begin{aligned}
& 1.8 \times 10^{-5}=\frac{(x)(x)}{(0.100-x)}=\frac{x^{2}}{0.100-x}
\end{aligned}
$$

$$
\begin{aligned}
& 1.8 \times 10^{-5}=\frac{x^{2}}{0.100-x} \\
& \text { Like the acid problem we solved earlier, this is a } \\
& \text { QUADRATIC and can be solved with the } \\
& \text { quadratic formula. BUT ... we can simplify this } \\
& \text { one too! } \\
& \text { Assume } \\
& 0.100-x \approx 0.100 \\
& 1.8 \times 10^{-5}=\frac{x^{2}}{0.100} \\
& \text { be careful!! This is HYDROXIDE } \\
& \text { concentration, not HYDRONIUM } \\
& \text { concentration! } \\
& p O H=-\log _{10}(0.0013416)=2.87 \\
& p H+p O H=14.00 \text { so } \\
& \text { If you'd solved this problem using the } \\
& \text { quadratic equation, you would have found } \\
& \text { the } \mathrm{pH} \text { of the solution to be 11.13. }
\end{aligned}
$$

155
Compare pH to the pH of an 0.100 M solution of the strong base NaOH :

$$
\begin{aligned}
& \mathrm{pH}_{1 \mathrm{NH}_{3}}=11.13 \\
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So, } 0.100 \mathrm{M} \mathrm{NaOH} \text { has }\left[\mathrm{OH}^{-}\right]=0,100 \\
& \mathrm{POH}=-\log _{10}(.100)=1.00 \\
& \quad \mathrm{PH}=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)

