A compound (containing $\mathrm{Mn}, \mathrm{C}, \mathrm{O}$) is $28.17 \% \mathrm{Mn}, 30.80 \% \mathrm{C}$. A solution of the compound containing 0.125 g in 5.38 g cyclohexane freezes at 5.28 C . What is the molecular formula?

$$
\begin{aligned}
& \Delta T \kappa=W \kappa \times C_{m} \\
& T_{f_{1}}, y c=6.55^{\circ} \mathrm{C}, W_{f}=20.00 \% / \mathrm{m} \\
& \text { (sec } \beta 509,10 \text { th }) \\
& C_{m}=\frac{\text { mol vnhnown }}{\frac{h_{g} C y C}{L s .38 g}}=0.00538 \mathrm{~kg}
\end{aligned}
$$

We'll need to find the MOLECULAR WEIGHT to determine the molecular formula. To do THAT, we need to find out how many moles of unknown are present.

$$
\begin{aligned}
\left(6.55^{\circ} \mathrm{l}-5.28^{\circ} \mathrm{l}\right) & =\left(20.0^{\circ \mathrm{C} / \mathrm{m})} \mathrm{Cm}\right. \\
c m & =0.0635 \mathrm{~m} \\
0.0635 m= & \frac{\text { mol }}{0.00538 \mathrm{bgcyc}}=3.4163 \times 10^{-4} \text { mol untr }
\end{aligned}
$$

Now, find molecular weight

$$
\frac{\text { mass unknown }}{\text { mol unthown }}=\frac{0.125 \mathrm{~g} \text { uni }}{3.4163 \times 10^{-4} \text { mol ont }}=\frac{366_{\mathrm{MOLECULAR}}}{\substack{\text { WEIGHT } \\ \text { Of unknown! }}}
$$

Find the EMPIRICAL (smallest ratio) formula from the mass data given:

$$
\begin{aligned}
& 28.17 \% \mathrm{mn}_{n} \quad 100 \%-28.17 \%-30.80 \%=41.03 \% 0 \\
& 30.80 \% \mathrm{C}
\end{aligned}
$$

Convert this mass percents to a MOLAR ratio:
To reduce this ratio to small whole
Assume 100 g basis, numbers (for the formula), let's divide each term by the smallest one (in this case, the Mn's 0.512...)

$$
\begin{aligned}
& 28.17 \mathrm{~g} \mathrm{mnx} \frac{\text { mol } m_{n}}{54.94 \mathrm{gmn}}=0.5127411722 \mathrm{mul} \mathrm{mn}_{\mathrm{n}} \quad 1 \mathrm{mul} \mathrm{mn}_{\mathrm{n}} \\
& 30.80 \mathrm{~g}\left(\times \frac{\mathrm{molc}}{12.01 \mathrm{gc}}=2.564529559 \mathrm{mul} \mathrm{C}\right. \\
& 41.03 \mathrm{~g} \mathrm{O} \times \frac{\mathrm{mol} 0}{16.00 \mathrm{go}}=2.564375 \mathrm{~mol} 0
\end{aligned}
$$

So the EMPIRICAL FORMULA is ... $\mathrm{Mn}_{n} \mathrm{C}_{S}$

$$
\begin{aligned}
& M_{n}: 1 \times 54.94 \\
& C: 5 \text { s } 12.01 \\
& 0: \frac{5 y 16.00}{194.99} \text { glmulicrmpare to } 366 \mathrm{~g} / \mathrm{mul}
\end{aligned}
$$ 195 times 2 is $390 \ldots$ which is the closest we'll get to 366 .

$$
\operatorname{mn}_{2} C_{10} O_{10}
$$

56 grams of a sample contain 0.51 mole fraction propane and the remainder butane. What are the masses of propane and butane in the sample?

Wow: $X_{C_{3} H_{8}}=0.51$
need: muss $\mathrm{C}_{3} \mathrm{H}$

$$
X_{c_{4} H_{10}}=1-0.51=0.49
$$

$$
\operatorname{mass} L_{4} l_{10} \text { in } S_{g}
$$

How do we get from MOLE FRACTION to MASS? Let's try changing units ...

$$
\begin{aligned}
& X_{C_{3} H_{8}}=0.51=\frac{m u l}{} C_{3} \mathrm{H}_{8} \quad \text { Let's assume ... FOR NOW ... that we have a } \\
& \text { mole of the mixture. } \\
& { }^{m u l_{C_{3} V_{8}}}=0.5|x|=0.51 \operatorname{mal}_{3} \mathrm{H}_{8} \quad \text { Now, let's change these to masses. } \\
& \text { WeI need formula weights. } \\
& \mathrm{mul}_{\mathrm{C}_{4} \mathrm{H}_{10}}=0.49 \times 1=0.49 \mathrm{mul}_{4} \mathrm{HH}_{10} \\
& \mathrm{C}_{3} \mathrm{H}_{8}: 44.094 \mathrm{~s} \text { lmul } \\
& C_{4} H_{10}: 58.12 \mathrm{~g} / \mathrm{mul} \\
& \mathrm{~g}_{3} \mathrm{H}_{8}=0.51 \mathrm{mul} \times \frac{44.094 \mathrm{~g}}{\mathrm{~mol}}=22.48794 \mathrm{gC}_{3} \mathrm{H}_{8} \\
& g C_{4} H_{10}=0.49 \mathrm{mul} \times \frac{58.12 \mathrm{~g}}{\mathrm{mul}}=\frac{28.4288 \mathrm{~g} \mathrm{C}_{\mathrm{y}} H_{10}}{50.96674 \mathrm{~g} \text { tutu }} \\
& \text { Use the ratio of } \\
& \text { mass butane/ } \\
& \text { mass total to find } \\
& \text { the actual } \\
& \text { butane content } \\
& \text { of the sample! }
\end{aligned}
$$

$$
\begin{aligned}
& g C_{3} \mathrm{H}_{8}=0.51 \mathrm{mul} \times \frac{44.094 \mathrm{~g}}{\mathrm{~mol}}=22.48794 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \\
& \mathrm{~g} C_{4} H_{10}=0.49 \mathrm{mul} \times \frac{58.12 \mathrm{~g}}{\mathrm{mul}}=\frac{28.4288 \mathrm{~g} \mathrm{CyH}}{10} \\
& 50.96674 \mathrm{~g} \text { tutul }
\end{aligned}
$$

So, for propane:

$$
56 \mathrm{~g} \times \frac{22.48794 \mathrm{gC}_{3} \mathrm{H}_{8}}{50.96674 \mathrm{~g} \text { total }}=24.7 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}
$$

And for butane:

$$
56 \mathrm{~g} \times \frac{28.4788 \mathrm{~g} C_{4} H_{10}}{50.96674 \mathrm{~g} \text { total }}=31.3 \mathrm{~g} \mathrm{C}_{4} H_{10}
$$

So the composition of the sample is 25 g propane, 31 grams butane!

Commercial sulfuric acid (98% by mass) is 18 M . What is the density of the solution, and what is the molality?

$$
\begin{aligned}
& \text { want: density } \left.=\frac{\text { mass Solution }}{\text { vol solution }} \right\rvert\, \text { crow: } 18 \mathrm{M}=\frac{\text { mol H2 Soy }}{\text { solution }} \\
& \text { molality }=\frac{\operatorname{mal} \mathrm{H}_{2} \mathrm{So}_{4}}{\mathrm{ws} \mathrm{H}_{2} \mathrm{O}} \\
& 98 \%=\frac{9 \mathrm{H}_{2} \mathrm{So}}{\log }
\end{aligned}
$$

Let's assume a liter of solution:

$$
\begin{aligned}
& \frac{18 \mathrm{~mol}_{2} \mathrm{So}_{4}}{L} \times I L=18 \mathrm{mul} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \begin{array}{l}
\text { so well have to calculate } \dagger \\
\text { of sulfuric acid } \\
\mathrm{H}_{2} \mathrm{So}_{4}: 98.086 \mathrm{~g} \mathrm{lmul}
\end{array} \\
& 18 \mathrm{mul} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{98.086 \mathrm{~g}}{\mathrm{mul}}=1765.548 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

We need to find the mass of solution, so we'll have to calculate the mass

Now, we need to find the MASS of the SOLUTION:
$1765.548 \mathrm{~g}=0.98 \times$ muss sulution ... since the solution is 98% sulfuric acid muss solution $=1801.574592 \mathrm{~g}$

Now, find density:

$$
\text { density }=\frac{\text { mass solution }}{\text { vol solution }}=\frac{1801.763265 \mathrm{~g}}{1000 \mathrm{~mL}}=1.8 \mathrm{~g} / \mathrm{mL}
$$

$$
\text { molality }=\frac{\operatorname{mal} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{Wg} \mathrm{H}_{2} \mathrm{O}}
$$

We can solve the rest of the problem several different ways from this point, but let's just keep our assumption of 1 L of the acid.

If we do that, we know the moles sulfuric acid, and we've already calculated the mass of solution and the mass of acid.
Find mass water by subtraction:

$$
1801.579592 g-1765.548 g=36.03159184 g H_{2} O
$$

$$
\text { molality }=\frac{\text { maul } \mathrm{H}_{2} \mathrm{So}_{4}}{\text { wo } \mathrm{H}_{2} \mathrm{O}}=\frac{18 \mathrm{mul} \mathrm{~W}_{2} \mathrm{SO}_{4}}{0.03603159184 \mathrm{hg}}=\begin{aligned}
& - \\
& \mathrm{SOO}_{2} \mathrm{~m} \\
& \mathrm{H}_{2}
\end{aligned}
$$

