- are the "recipes" in chemistry - show the substances going into a reaction, substances coming out of the reaction, and give other information about the process $$\text{MgCl}_{2}(aq) + 2 \text{AgNO}_{3}(aq) \xrightarrow{\text{"yields"}} 2 \text{Ag}(|_{(s)} + \text{Mg}(NO_{3})_{2}(aq)$$ REACTANTS - materials that are needed fot a reaction PRODUCTS - materials that are formed in a reaction COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others PHASE LABELS - give the physical state of a substance: - (s) -solid - (I) liquid - (g) gas - (aq) aqueous. In other words, dissolved in water ## CHEMICAL EQUATIONS $$2 \text{ Mg(s)} + O_2(g) \xrightarrow{\Delta} 2 \text{ MgO(s)}$$ REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be: - \triangle apply heat - catalysts substances that will help reaction proceed faster - other conditions, such as required temperatures - Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions ## COEFFICIENTS - Experimentally, we can usually determine the reactants and products of a reaction - We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING - BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it. - A properly balanced chemical equation has the smallest whole number ratio of reactants and products. - There are several ways to do this, but we will use a modified trial-and-error procedure. ## BALANCING $$C_3H_6 + 50_2 \rightarrow 3CO_2 + 4H_2O$$ $$\frac{6}{10}$$ - \bigcirc Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation. - Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE! - (3) Repeat 1-2 until all elements are done. - Go back and quickly <u>VERIFY</u> that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMIMATOR of your fraction. Use SMALLEST WHOLE NUMBER RATIOS! $$3M_{9}Cl_{2}+2N_{a_{3}}PO_{4} \longrightarrow M_{g_{3}}(PO_{4})_{2}+6N_{a}Cl$$ We used 2 1/2 as the coefficient for oxygen, which makes the math work out (we needed exactly five oxygen atoms on the lett). BUT ... we need to balance with WHOLE NUMBER coefficients, not fractions. So ... let's MULTIPLY EVERY coefficient by the denominator of the fraction (2) $$H_2SO_H + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$ - 1) Avoid H, balance S since H appears twice on the left. - 2) Avoid O, balance Na since O appears in every compound! - 3) Balance H, since it shows up fewer times than O - 4) Balance O. (It's already done!)