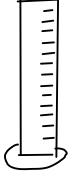
CHM 100

Today's Experiment: 2

Due today (one per table): -Pages 19-22

Notes:


- * Remember to include UNITS on all measurements on page 20-22.
- * Remember to show calculation setups when asked (pages 20-22)
- * See page 333 for conversion factors

SAFETY (bunsen burner):

- * Avoid contact with the top (burn hazard). Always handle the burner by the bottom.
- * To turn the burner off, turn the gas off at the tap - DO NOT turn the burner off using the flow control on the burner itself.
- * When you're done with the lab, make sure the gas is turned off at the tap before you leave lab.

How to measure and calculate density

... of a liquid

- 1) Measure mass of empty cylinder mass = 97.35 g

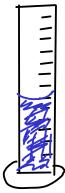
2) Fill cylinder and measure volume of liquid

volume = 25.3 ml

3) Measure mass of filled cylinder

mass = 130.55 g

4) Subtract to find mass of liquid


5) Density = mass liquid / volume liquid

Density =
$$\frac{33.20 \text{ g}}{25.3 \text{ mL}}$$

= $\frac{1.31 \text{ mL}}{3}$

... of an object

1) Measure mass of object mass = 9.78 g

2) Partially fill cylinder with liquid, record volume.

volume = 25.0 mL

3) Put object into cylinder, record new volume

volume = 26.6 mL

4) Subtract to find volume of object

5) Density = mass object / volume object

Density =
$$\frac{9.78}{1.6}$$
 mL

Today's Experiment: 3

Due today (one per table): - Pages 29-32

Important SAFETY Info:

- * Wear glasses/apron for the ENTIRE exeriment!
- * 9% H202 can burn skin on contact!
- * Dispose of MyD2 in marked waste funnel.

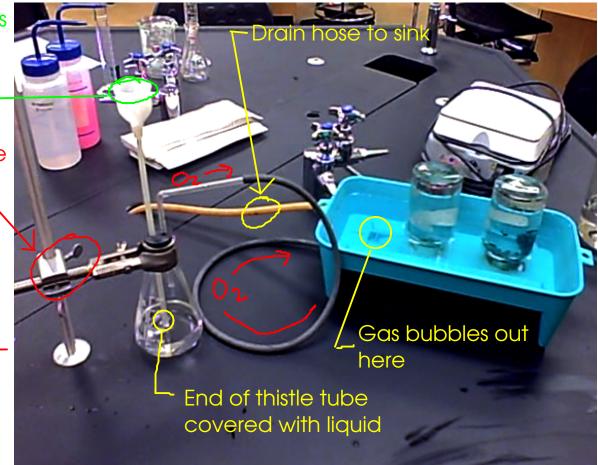
Notes on OXYGEN:

- * Element, symbol: O
- * Exists in air as

 MOLECULAR OXYGEN

 or, OXYGEN GAS,

 symbol: 02
- * MORE DENSE than air.
- * Not very soluble in WATER


Making oxygen gas:

 $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$ "Formula equation"

Collect oxygen by DOWNWARD DISPLACEMENT

H₂O₂ goes into top of thistle tube

CLAMP the flask to a stand

"Phase labels" - indicate the STATE of

"word

equation"

each substance in an equation

Oxygen has an important role in COMBUSTION

- combustion is the reaction of a substance with OXYGEN GAS to produce OXIDES

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

carbon + oxygen adioxide (an oxide)

3 Fe (s) + 2 Oz(g) -> Fe304(s)

iron + oxygen \longrightarrow iron oxide

CHM 100

Today's Experiment: 4

Due today (one per table): - Pages 39-42

Important SAFETY Info:

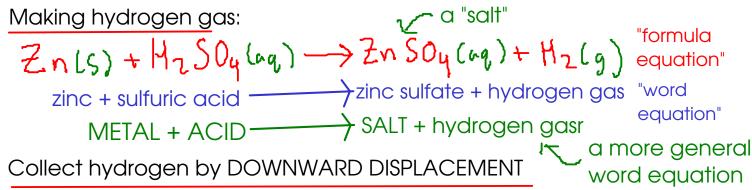
- * Wear glasses/apron for the ENTIRE exeriment!
- * ACIDS can burn skin on contact!
- * Dispose of METAL WASTE in marked waste beaker.

Notes on HYDROGEN:

- * Element, symbol $\,:\, \mathsf{H}\,$
- * Exists in air as

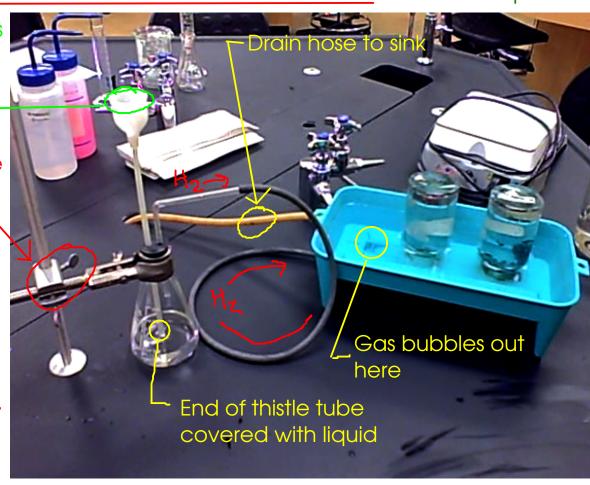
 MOLECULAR HYDROGEN

 or, HYDROGEN GAS,


 symbol: H2
- * LESS DENSE than air.
- * Not very soluble in WATER

Hydrogen is COMBUSTIBLE

 Hydrogen reacts with OXYGEN GAS to produce the most common oxide of hydrogen - WATER.


$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

hydrogen + oxygen -> water

Hasing goes into top of thistle tube

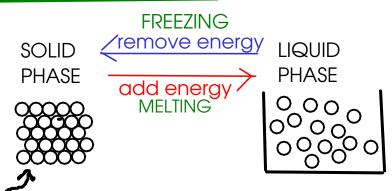
CLAMP the flask to a stand

Alternate way to make hydrogen gas: Sodium!

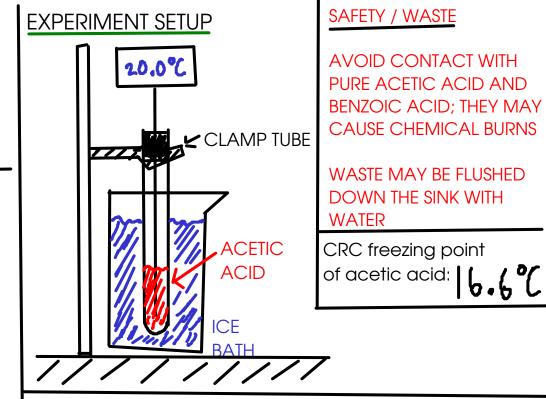
Today: Experiment 6 Due today: p57-59

Today we will measure the freezing point of pure acetic acid and see how that freezing point is affected by impurities

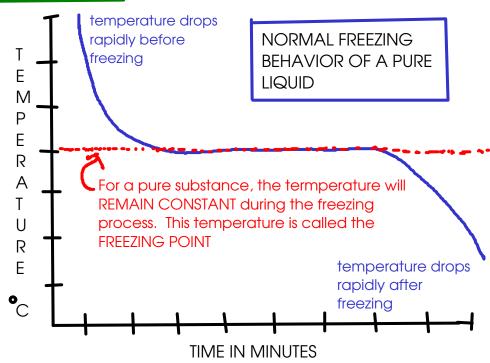
TERMS


MELTING POINT: Temperature at which a substance changes from solid to liquid

FREEZING POINT: Temperature at which a substance changes from liquid to solid


SUPERCOOLED: A substance that exists as a liquid at a temperature below its freezing point. An unstable state.

FREEZING POINT DEPRESSION: The lowering of freezing point (relative to pure compound) caused by the presence of an impurity.


THE FREEZING PROCESS

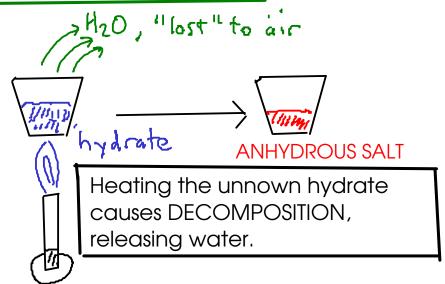
The presence of an IMPURITY slows the formation of solid crystals, affecting the freezing point!

SAMPLE PLOT

Today: Expt. 7 Turn in: p65-66

HYDRATES

- Ionic compounds that have incorporated WATER MOLECULES into their crystal structure.
- will DECOMPOSE when heated sometimes by losing just the water, sometimes by losting water and other substances


hydrate
$$\xrightarrow{\Delta}$$
 anhydrous + water
Cusoy • 5H2O $\xrightarrow{\Delta}$ Cusoy + 5H2O

- We'll look at the decomposition above QUALITATIVELY. The reaction can be easily detected by a COLOR CHANGE.
- The ANHYDROUS SALT can regain its lost water. This reaction may be accompanied by a color change, too!. You may also be able to detect a change in temperature.

SAFETY:

- Do not touch crucible with yoru hands use crucible tongs! (Burn hazard)
- Make sure your gas tap is OFF before you leave!
- Dispose of all solid waste IN THE DESIGNATED BOTTLE!

Quantitative experiment

CALCULATIONS

* CCS = "crucible, cover, and sample"