145 REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules
slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
${ }^{146}$ van der Waal equation
- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T \text { Ideal gas equation } \\
& \left.\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T\right] \begin{array}{l}
\text { van der Wails } \\
\text { equation }
\end{array} \\
& \text { attempts to account for molecular size }
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. 1208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0.08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
${ }^{147} 250 \overline{0} \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert volume of chlorine gas to moles using ideal gas equation.
2 - Convert moles chlorine gas to moles HCl using chemical equation.
3 - Convert moles HCl to mass using formula weight.

$$
\begin{aligned}
& \text { (1) } \begin{array}{rl|l}
P V & =n R T & P=1.00 \mathrm{~atm} \\
n & =P V & V=25 \overline{0} 0 \mathrm{~L}
\end{array} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=25 \overline{O O L} \\
& n_{\mathrm{Cl}_{2}}=\frac{(1.00 \mathrm{~atm})(25 \overline{\mathrm{OLL}})}{\left(0.08206 \frac{\mathrm{ramm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol} \mathrm{cl}_{2} \\
& \left.\begin{array}{l|l|l}
\text { mol } \mathrm{Cl}_{2}=2 \mathrm{~mol} \mathrm{HCl} & \mathrm{Hi}:(\times 1.008 \\
\mathrm{Cl}: \frac{1 \times 35.45}{36.458 \mathrm{~g} \mathrm{HCl}}=\operatorname{mol~HCl}
\end{array} \right\rvert\, \mathrm{Kg}=10 \mathrm{~g} \\
& 102.1646983 \mathrm{molic} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Cl}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{molHCl}} \times \frac{\mathrm{kg}}{10 \mathrm{~g}}=\begin{array}{l}
7.45 \mathrm{~kg} \\
\mathrm{HCl}
\end{array}
\end{aligned}
$$

Calculate the mass of $2265_{5}^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\uparrow \mathrm{O}_{2}
$$

1 - Convert 22650 L of oxygen gas to moles using ideal gas equation.
2 - Convert moles oxygen gas to mass using formula weight.

$$
\begin{aligned}
& \text { (1) } P V=n R T \quad P=1.18 \mathrm{~atm} \quad T=25.0^{\circ}=298.2 \mathrm{~K} \\
& n=\frac{P V}{R T} \left\lvert\, \begin{array}{l}
V=22650 \mathrm{~L} \\
R=0.08206 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol} \cdot \mathrm{~h}^{\prime}}
\end{array}\right. \\
& n_{O_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latam}}{\mathrm{~mol} \cdot \mathrm{~h}}\right)(298.2 \mathrm{kx})}=1092.222357 \mathrm{~mol} \mathrm{O}_{2} \\
& 32.00 \mathrm{y} \mathrm{O}_{2}=\mathrm{mol} \mathrm{O} 2 \\
& 1092.222357 \mathrm{molO}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=35000 \mathrm{gO}_{2} \sim 77 \mathrm{lb}
\end{aligned}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

We need to calculate $M \mathrm{HCl}=\frac{\text { mol } \mathrm{HCl}}{L \mathrm{HCl} \text { solution } \leqslant 48.90 \mathrm{~mL}=0.04890 \mathrm{~L}}$
1 - Convert 125.0 mL of carbon dioxide gas to moles using ideal gas equation.
2 - Convert moles carbon dioxide gas to moles HCl using chemical equation.
3 - Calculate molarity of HCl by dividing $\mathrm{mol} \mathrm{HCl} / 0.04890 \mathrm{~L}$

$$
\begin{aligned}
& \text { (1) } n=\frac{P V}{R-} \quad \begin{array}{ll}
P=0.950 \text { at } m & R=0.08200 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array} \\
& R T V=125.0 \mathrm{~mL}=0.1250 \mathrm{~L} \\
& T=290.2 \mathrm{~K} \\
& n_{\mathrm{LO}_{2}}=\frac{(0.950 \mathrm{~atm})(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(290.2 \mathrm{k})}=0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \\
& 2 \operatorname{mol} H C L=\operatorname{mol} \mathrm{CO}_{2} \\
& 0.0049866019 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{molCO}}=0.0099732038 \mathrm{~mol} \mathrm{HCl} \\
& M_{H C l}=\frac{\text { mol } \mathrm{HCl}}{L_{\mathrm{HCl}} \text { solution }}=\frac{0.0099732038 \mathrm{~mol} \mathrm{HCl}}{0.04890 \mathrm{~L}}=\begin{array}{c}
\left.\begin{array}{c}
0.204 \mathrm{M} \\
\mathrm{HCl}
\end{array}\right]
\end{array}
\end{aligned}
$$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
^ motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m v_{\text {velocity }}^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

