THE KINETIC PICTURE OF GASES

(1) Gas molecules are small compared to the space between the gas molecules!

LOW DENSITY!

(2)

Gas molecules are constantly in motion. They move in straight lines in random directions and with various speeds.

Attractive and repulsive forces between gas
(3) molecules are so small that they can be neglected except in a collision.

- Each gas molecule behaves independently of the others.
(4) Collisions between gas molecules and each other or the walls are ELASTIC.
(5) The average kinetic energy of gas molecules is proportional to the absolute temperature.

How does this picture explain the properties of gases?

- Gases expanding to fill their container? Agrees with kinetic picture, since gas molecules are independent
- Thermal expansion of gas at constant pressure? Agrees, because the container has to EXPAND to keep the pressure (from collisions) constant when the gas molecules move faster.
- Pressure increases with temperature at constant volume: Agrees, because the number and force of collisions increases with molecular speed.

GAS LAWS

- were derived by experiment long before kinetic theory, but agree with the kinetic picture!

Boyle's Law:

$$
\begin{aligned}
& P V=\text { constant } \\
P_{1} V_{1}=\text { constant } & P_{2} V_{2}=\text { constant } \\
& \rightarrow P_{1} V_{1}=P_{2} V_{2} \text { True at constant temperature at constant temperature }
\end{aligned}
$$

Charles's Law:

$$
\begin{aligned}
& \frac{V}{T}=\text { constant } \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array} \\
& \rightarrow \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \begin{array}{l}
\text { True at constant pressure, and } \\
\text { using ABSOLUTE temperature }
\end{array}
\end{aligned}
$$

Combined gas law:

Avogadro's law:

- a mole of any gas at the same conditions has the same volume.

1 mol gus molecules@ $0^{\circ} \mathrm{C}$ and 1 atm
"STR"
Standard volume $=22.4 \mathrm{~L}$ Temperature and
 Pressure

Ideal gas law:

${ }^{142}$ CHEMICAL CALCULATIONS WITH THE GAS LAWS $\quad \mathrm{FW}_{\mathrm{NaHCO}_{3}}=84.007 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{4}\right)+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas.would be produced at 25.0 C and 0.950 atm pressure?

1 - Convert 25.0 g sodium bicarbonate to moles using formula weight.
2 - Convert moles sodium bicarbonate to moles carbon dioxide using chemical equation.
3 - Convert moles carbon dioxide to volume using ideal gas equation.
$84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHCO}_{3} \mid 2 \mathrm{~mol} \mathrm{NaHCO}_{3}=2 \mathrm{~mol} \mathrm{CO}_{2}$

$$
2 \mathrm{SO}_{\mathrm{g} \mathrm{NaHCO}_{3} \times \frac{\mathrm{mol} \mathrm{NaHCO}_{3}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{NaHCO}_{3}}}^{\text {(1) }}=0.2975942481 \mathrm{~mol} \mathrm{CO}_{2}
$$

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
n=0.2975942481 \mathrm{~mol} \mathrm{CO}_{2} & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{ahm}}{\mathrm{~mol} \cdot \mathrm{~K}} & P=0.950 \mathrm{~atm} \\
V & =\frac{\left(0.2975942481 \mathrm{~mol}\left(0_{2}\right)\right.}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{arm}}{\mathrm{mul} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}(20 \mathrm{~atm})
\end{array} \quad 7.67 \mathrm{LC(O2}\right.
\end{aligned}
$$

143
What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)
Let's use the COMBINED GAS LAW to solve this problem!

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}, \frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=V_{2} \left\lvert\, \begin{array}{l}
P_{1}=0.950 \mathrm{ctm} \quad P_{2}=1 \mathrm{~atm} \\
V_{1}=7.67 \mathrm{~L} \quad T_{2}=273.2 \mathrm{k} \\
T_{1}=298.2 \mathrm{k}
\end{array}\right. \\
& V_{2}=\frac{(0.950 \mathrm{~atm})(7.67 \mathrm{~L})(273.2 \mathrm{k})}{(298.2 \mathrm{k})(1 \mathrm{~atm})}=6.68 \mathrm{~L}\left(O_{2} @ S T P\right.
\end{aligned}
$$

Alternate solution: Since we know the value of ' n ' (number of moles of gas), we could also calculate the volume of the gas at these conditions with the ideal gas equation. (Try it!)

144

$$
F W_{\mathrm{NH}_{4} \mathrm{NO}_{3}}=80.0434 \mathrm{~g} / \mathrm{mol}
$$

$$
2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

At $300^{\circ} \mathrm{C}$, ammonium nitrate violently decomposes to produce nitrogen gas, oxygen gas, and water vapor. What is the total volume of gas that would be produced at 1.00 atm by the decomposition of 15.0 grams of ammonium nitrate?

To simplify the calculation, we will calculate the TOTAL MOLES OF GAS instead of calculating the moles of each gas separately.
1 - Convert mass ammonium nitrate to moles using formula weight.
2 - Convert moles ammonium nitrate to TOTAL MOLES OF GAS using chemical equation.
3 - Convert TOTAL MOLES OF GAS to volume using ideal gas equation.

$$
\text { (3) } V=\frac{n R T}{\rho} \left\lvert\, \begin{array}{ll}
n=0.6558941774 \mathrm{molgas} & T=300.0 \mathrm{C}=573 \mathrm{~K} \\
R=0.08206 \frac{\mathrm{Lratm}}{\mathrm{mal} \cdot \mathrm{~K}} & P=1.00 \mathrm{~atm}
\end{array}\right.
$$

$$
V=\frac{(0.6558941774 \mathrm{molgas})\left(0.08206 \frac{\mathrm{~L} \mathrm{\cdot atm}}{\mathrm{mal} \cdot \mathrm{~K}}\right)(\mathrm{s} 73 \mathrm{k})}{(1.00 \mathrm{~atm})}=\begin{gathered}
30.8 \mathrm{~L} \\
\mathrm{gas}
\end{gathered}
$$

$$
\begin{aligned}
& 80.0434 \mathrm{gNH}_{4} \mathrm{NO}_{3}=\mathrm{molNH}_{4} \mathrm{NO}_{3} \quad 2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}=7 \mathrm{molgas} \quad(2+1+4=7) \\
& 15 . \mathrm{O}_{\mathrm{g}} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{molNHyNO}_{3}}{80.0434 \mathrm{~g} \mathrm{NH} \mathrm{NO}_{3}} \times \frac{7 \mathrm{molgas}_{2}^{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}=0.6558941774 \mathrm{~mol} \mathrm{gas}}{\text { (2) }}
\end{aligned}
$$

