So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?
Sec - What about SOLUTIONS, where the desired chemical is not PURE, but
15.4 found DISSOLVED IN WATER?
p 483 488 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{aligned}
& M=\text { MOLARITY } \\
&=\frac{\text { moles of solute }}{\text { Lsolution }} \\
& 6, O M \mathrm{HCl} \text { solution: }: \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{aligned}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \mathrm{~mol} \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
6.0 \mathrm{~mol} H C l=L
$$

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{molHCl}}{\mathrm{~L}}=1 . \mathrm{S}_{\mathrm{mol}} / \mathrm{HCl}
$$

138
If you need 0.657 moles of hydrochloric acid, how many milliliters of 0.0555 M HCl do you need to measure out?

$$
\begin{aligned}
& 0.05 S S \text { mol HCl }=\mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{0.05 S 5 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=\begin{array}{|}
11800 \mathrm{~mL} \mathrm{of} \\
0.0555 \mathrm{~m} \mathrm{HCl}
\end{array}
\end{aligned}
$$

This i is an impractical volume for lab-scale work - it;s much too large! Solution: use a
What if we used 6.00 M HCl ? MORE CONCENTRATED

$$
6.00 \mathrm{~mol} \mathrm{HCl}=L \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \quad \begin{aligned}
& \text { solution (like the } 6.00 \mathrm{M} \\
& \text { HAl below) }
\end{aligned}
$$

This is a more reasonable volume to use for lab-scale work! Measure this with a 250 mL greaduated cylinder!

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molarity of the solution. How?

Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make 250. mL of solution?

$$
M=\frac{\operatorname{mol} \mathrm{Na}(\mathrm{~N})}{\text { solution }}
$$

1 - Convert 3.50 g of NaCl to moles. Use formula weight.
2 - Divide moles $\mathrm{NaCl} /$ LITERS of solution we intend to make. (Convert 250 mL to L)

(2)

$$
\begin{aligned}
& m L=10^{-3} L \\
& 250 . \mathrm{mL} \times \frac{10^{-3} L}{m L}=0.250 \mathrm{~L} \quad M=\frac{0.059890486 \mathrm{~mol} \mathrm{NaCl}}{0.250 \mathrm{~L}} \\
& \approx 0.240 \mathrm{MNaCl}
\end{aligned}
$$

${ }^{140}$ A few more examples...
You have a 250 . \swarrow Use FORMULA WEIGHT when relating mass and moles \downarrow ($250 . \mathrm{g}$ bottle of silver(I) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
& \mathrm{Ag} \text { Cl: } \mathrm{Ag}: 1 \times 107.9 \\
& C 1: \frac{1 \times 35.45}{143.35 \mathrm{~g} \mathrm{AgCl}=\mathrm{mol} \mathrm{AgCl}} \\
& 250 . \mathrm{AgCl} \times \frac{\mathrm{mol} \mathrm{AgCl}}{143.35 \mathrm{~g} \mathrm{AgCl}}=1.74 \mathrm{mul} \mathrm{AgCl}
\end{aligned}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ? (usually MOLARITY - M)

$$
\begin{aligned}
& 1.50 \mathrm{~mol} \mathrm{NaOH}=L \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 15 S_{m L} \times \frac{10^{-3} \mathrm{~L}}{m L} \times \frac{1.50 \mathrm{~mol} \mathrm{NaOH}}{L}=0.233 \mathrm{mul} \mathrm{NaOH}
\end{aligned}
$$

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A 1=3 \text { molecules } B r_{2}=2 \text { formula units } A \mid B_{r_{3}}}{2 \text { mol } A 1=3 \text { mol } B r_{2}=2 \text { mol } A \mid B r_{3} *}
$$

- To do chemical calculations, we need to:
(1) - Relate the amount of substance we know (mass or volume) to a number of moles
(2) - Relate the moles of one substance to the moles of another using the equation
(3) - Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+\underline{3} B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert the 25.0 g of bromine to moles. Use formula weight.

$$
\begin{aligned}
& 159.8 \mathrm{gBr} 2=\mathrm{mol} \mathrm{Br}_{2} \\
& 25.0 \mathrm{~g} \mathrm{Br} \\
& 2
\end{aligned}
$$

$$
B r_{2}: \frac{2 \times 79.90}{159.8}
$$

(2) Convert the moles bromine to moles aluminum. Use chemical equation.

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.1564456 \mathrm{~mol} B r_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} B r_{2}} & =0.104297038 \mathrm{~mol} \mathrm{Al}
\end{aligned}
$$

(3) Convert the moles aluminum to mass. Use formula weight. Al:26.98

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=\operatorname{mol} A \mid \\
& 0.104297038 \operatorname{mol} A \left\lvert\, \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\operatorname{mol} A 1}=2.81 \mathrm{gAl}\right.
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.8 \mathrm{~g} \mathrm{Br}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \text { (2) } \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
$$

$$
\begin{aligned}
& 25.0 \mathrm{~g} \mathrm{Br} \\
& 2
\end{aligned} \mathrm{Co}
$$

But ...
...what would you have done to calculate the mass of aluminum bromide IF you had NOT been asked to calculate the mass of aluminum FIRST?

Calculating the mass of aluminum bromide directly:

$$
\begin{aligned}
& 25.0 \mathrm{y} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.8 \mathrm{~g} B r_{2}} \times \frac{2 \mathrm{~mol} A 1 B r_{3}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.68 \mathrm{gAlBr}}{1 \mathrm{~mol} \mathrm{AlBr}_{3}}=27.8 \mathrm{y} \mathrm{AlBr}_{3} \\
& A\left|B r_{3}: A\right|=1 \times 26.98 \\
& B r=\frac{3 \times 79.90}{266.68}
\end{aligned}
$$

