IDENTIFYING REACTIONS

You may see one or more of these signs when a chemical reaction occurs

- (1) A <u>change in tempera</u>ture that can't be explained in another way.
- 2 Emission of light that can't be explained in another way
- 3 The <u>formation of a solid</u> or PRECIPITATION in a previously liquid solution. (Not a simple phase change!) or gas formation.
- (4) Color change (not simply lightening of color caused by diluting a solution!)

END OF MATERIAL FOR TEST 2

- It's simpler to talk about different reactions if we can classify them into a small number of classes.
- Most of these reaction classes are reactions that involve TRANSFER OF ELECTRONS from one atom to another. The LAST class or reactions we will discuss does NOT involve electron transfer!

COMBINATION REACTIONS

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

- Form:

Example:

$$2 H_1 O_2(\ell) \longrightarrow 2 H_2 O(\ell) + O_2(g)$$

- * This reaction is NOT a combustion reaction, even though O₂ is involved!
- * Combustion reactions CONSUME O₂, while this reaction PRODUCES O₂

(3)

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (0_2) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:

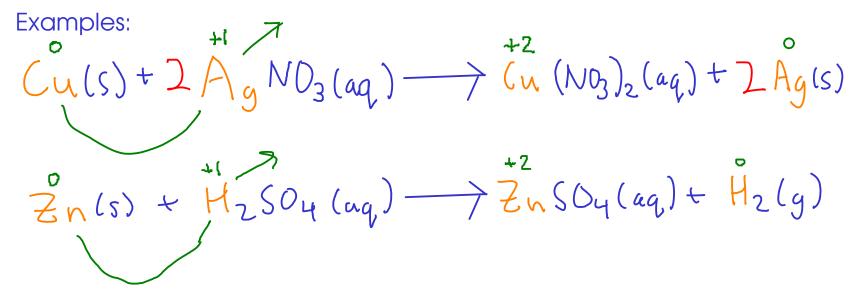
$$AB + O_2 \longrightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

Oxides!

$$\begin{array}{c} \times \\ \text{C3H8}(9) + 502(9) \longrightarrow 4 \text{H2U}(9) + 3002(9) \end{array}$$


$$2mg(s) + O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

4 SINGLE REPLACEMENT REACTIONS

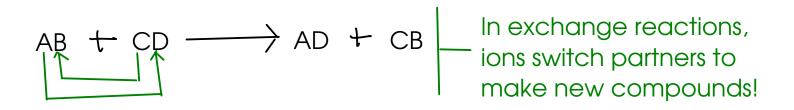
- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Easy to spot, since there is an element "by itself" on each side of the equation.

*Single replacement reactions are all examples of ELECTRON TRANSFER or OXIDATION-REDUCTION chemistry!

CLASSIFYING REACTIONS

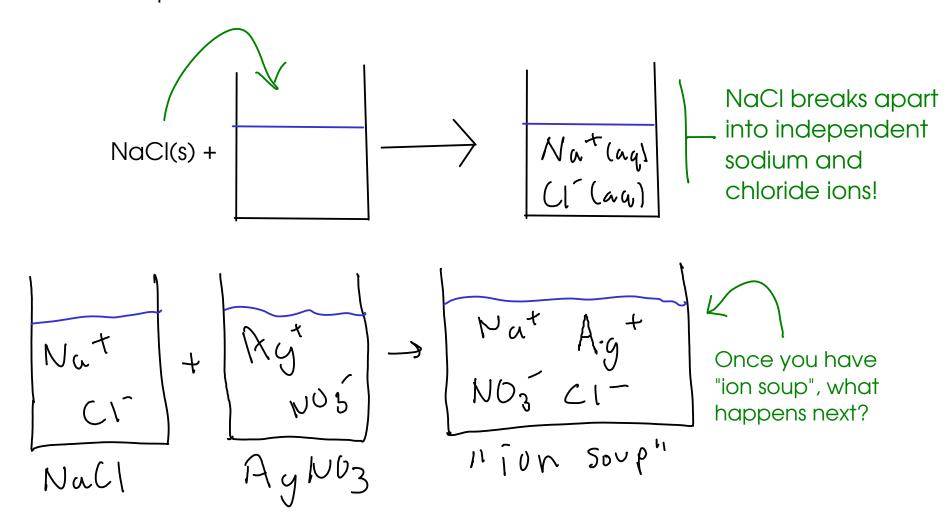
DOUBLE REPLACEMENT REACTIONS

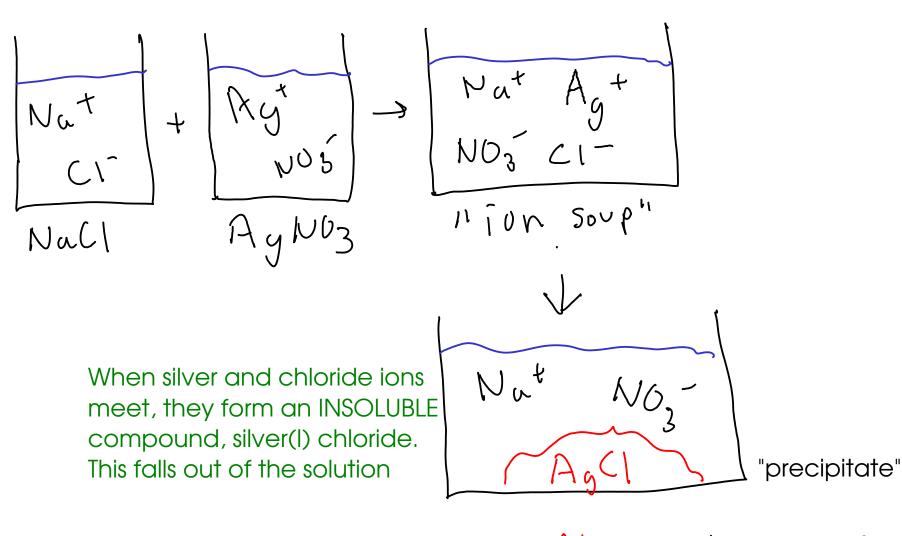

- Also called "exchange" reactions
- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

- Form: AB + CD
$$\longrightarrow$$
 AD + CB "A" and "C" are CATIONS "B" and "D" are ANIONS

- Can be predicted based on the characteristics of the potential products (More on that later!)
- Occur in AQUEOUS SOLUTION

-Do not involve electron transfer. Examples: $3 \text{ Mg (12(aq) + 2Na_3 PO4 (aq)} \longrightarrow \text{ Mg3 (PO4)}_2(s) + 6 \text{ NaCl(aq)}$ $4 \text{ Ag NO3(aq)} + \text{ NaCl(aq)} \longrightarrow \text{ Ag Cl(s)} + \text{ NaNO3(aq)}$


DOUBLE REPLACEMENT (EXCHANGE) REACTIONS



... but HOW do they switch partners?

- (1) Exchange reactions almost always take place in AQUEOUS SOLUTION
- (2) In aqueous solution, IONIC THEORY applies!

- Briefly, ionic theory states that certain substances (like soluble ionic componds) break apart into their component ions when dissolved in water!

$$Null(aq) + AgNO_3lau) \rightarrow Ag(lls) + NalVO_3lau)$$
Formation of AgCI drives this reaction!

For an exchange reaction to proceed, there must be something (a new product) DRIVING the reaction.

3 kinds of exchange chemistry:

- (1) Reactions that form PRECIPITATES (insoluble ionic compounds)
- Reaction that form STABLE MOLECULES like <u>water</u>
 if water forms, reaction is called "neutralization"
- Reactions that form UNSTABLE MOLECULES that break down into other small molecules, often gases.
 - If any of these three possibilities form from the "ion soup", a reaction will occur.

If not, NO reaction occurs.