Example: How would we prepare 500 mL of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

We know that we need 500 . mL of solution, and we also know that the concentration should be 0.500 M . From that, we can calculate the moles of sodium sulfate we should dissolve. Then, we can convert that to mass using formula weight

$$
\begin{aligned}
& 0.500 \mathrm{~mol}_{\mathrm{Ma}}^{2} \mathrm{\delta O}_{4}=\mathrm{L} \mid \mathrm{mL}=10^{-3} \mathrm{~L} \\
& 142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{mol} \mathrm{NNa}_{2} \mathrm{SO}_{4} \\
& 5002 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{m L} \times \frac{0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{L} \times \frac{142 . \mathrm{OS}_{\mathrm{g}} \mathrm{Na}_{2} \mathrm{So}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\begin{array}{l}
3 \mathrm{~S} . \mathrm{Sg}_{\mathrm{g}} \\
\mathrm{Na}_{2} \mathrm{SO}_{4}
\end{array}
\end{aligned}
$$

So, to prepare this solution, put 35.5 grams of sodium sulfate solid into a 500. mL volumetric flask, then fill to the line with distilled water.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} \backslash / 2 \quad \ldots \text { the "DILUTION EQUATION" } \\
& M_{1}=\text { molarity of concentrated solution } \\
& V_{1}=\text { volume of concentrated solution } \\
& M_{2}=\text { molarity of dilute solution } \\
& V_{2}=\text { volume of dilute solution (total wow me, nut volume af } \\
& \text { added solvent r!) }
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} V_{2} \\
(0.500 \mathrm{~m}) V_{1} & =(0.333 \mathrm{~m})(150 . \mathrm{mL}) \\
V_{1} & =99.9 \mathrm{~mL} \text { of } 0.500 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

To make the solution, measure out 99.9 mL of 0.500 M sodium sulfate into a 150 mL volumetric flask, then dilute to the mark with distilled water. (If no flask is avaialble, you can do the same thing in a large graduated cylinder.)

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{}=3 \text { molecules } B_{r_{2}}=2 \text { formulaunits } A \mid B_{r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
\underline{2} A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{aligned}
& \text { invert grams of bromine to moles: Need formula weight } B r_{2}=\frac{2 \times 79.90}{159.80} \\
& 159.80 \mathrm{~g} r_{2}=1 \text { mol } B r_{2}
\end{aligned}
$$

$$
25.0 \mathrm{~g} B r_{2} \times \frac{1 \mathrm{~mol} B r_{2}}{159.80 \mathrm{~g}_{2}}=0.15645 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} A 1=3 \mathrm{~mol} B_{r_{2}}$

$$
0.15645 \mathrm{~mol} B_{2} \times \frac{2 \mathrm{~mol} A_{1}}{3 \mathrm{~mol} \mathrm{Br}}=0.10430 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=1 \mathrm{~mol} \mathrm{Al} \\
& 0.1043 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{equation*}
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.80 \mathrm{~g} \mathrm{r}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al} \tag{1}
\end{equation*}
$$

You can solve the second part of the question using CONSERVATION OF MASS - since there's only a single product and you already know the mass of all reactants.

$$
\begin{aligned}
& 25.0 \text { y } \mathrm{Br}_{2} \quad \text { But... } \\
& +2.81 \mathrm{~g} \text { Ar } \quad \begin{array}{l}
\text { But.... } \\
+ \text {...hat would you have done to calculate the mass of aluminum }
\end{array} \\
& \text { bromide IF you had NOT been asked to calculate the mass of } \\
& \text { aluminum FIRST? } \\
& 25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \text { mol } \mathrm{Br}_{2}}{159.80 \mathrm{Br}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlBr}_{3}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{266.694 \mathrm{gAl} \mathrm{Br}_{3}}{1 \mathrm{~mol} \mathrm{Al} \mathrm{Br}_{3}}=27.8 \mathrm{~g}
\end{aligned}
$$

101 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1) Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT of sodium carbonate.
2) Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3) Convert moles HCl to volume. Use MOLAR CONCENTRATION (and L to mL conversion)

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{Na}: 2 \times 22.99 \\
& \text { L: | } \times 12.01 \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=\text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 25.0 \mathrm{y} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0,2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 2 \mathrm{~mol} \mathrm{HCl}=\operatorname{mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 0.2358713086 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}} \mathrm{CO}_{3} \\
& 0.4717426172 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

102 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
\underline{\mathrm{HCl}}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}_{4}(\mathrm{aq})\right.
$$

1) Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT of sodium carbonate.
2) Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION.
3) Convert moles HCl to volume. Use MOLAR CONCENTRATION (and L to mL conversion)
(3) $6.00 \mathrm{molhCl}=L \quad m L=10^{-3} \mathrm{~L}$

$$
0.4717426172 \mathrm{mulHCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{m L}{10^{-3 L}}=\begin{aligned}
& 78.6 \mathrm{~mL} \text { of } \\
& 6.00 \mathrm{MHCl}
\end{aligned}
$$

We used this factor because the problem specifically asked us for an answer in mL units. If we hadn't been asked, we might have chosen to leave the answer in L .

Tip: In most chemical calculation problems, you start with an AMOUNT (a mass or a volume) rather than a conversion factor (a formula weight or a concentraiton).

