${ }^{88}$
Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{aligned}
& 55.85 \mathrm{~g} \mathrm{Fe}=\mathrm{mol} \mathrm{Fe} \\
& 1.75 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{\mathrm{~mol} \mathrm{Fe}}=97.7 \mathrm{~g} \mathrm{Fe}
\end{aligned}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
H_{2} O: \quad H: 2 \times 1.008 & =2.016 \\
O: 1 \times 16.00 & =\frac{16.00}{18.0161}
\end{aligned}
$$

FORMULA WEIGHT is the mass of one mole

$$
18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\mathrm{mol}^{1} \mathrm{H}_{2} \mathrm{O}
$$

of either an element OR a compound.

$$
2 \mathrm{S.0} \mathrm{gH}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=1.39 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

90 Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

Find the formula of ammonium carbonate!

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{NH}_{4}^{+} \quad \mathrm{CO}_{3}^{2-} \\
\mathrm{NH}_{4}^{+} \\
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
\end{array} \\
& N: 2 \times 14.01 \\
& H: 8 \times 1,008 \\
& \text { C: } 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{96.094} \\
& 96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \\
& 3.65 \mathrm{~mol}^{2}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}= \\
& =3 \mathrm{~S} / \mathrm{g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}
\end{aligned}
$$

matemomensem

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{NO}_{3}: \mathrm{N}: 2 \times 14.01 & =28.02 \mathrm{H}: 4 \times 1.008 \\
0: 3 \times 16.00 & =\frac{48.00}{80.052} \mathrm{gNH}_{y} \mathrm{NO}_{z}=1 \text { mol } \mathrm{NH}_{4} \mathrm{NO}_{\mathrm{l}}
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution <dissolved substance

$$
\begin{gathered}
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOLUTION }} \\
6,0 \mathrm{M} \mathrm{HCl} \text { solution: } \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{gathered}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
6.0 \mathrm{~mol} \quad H C l=L
$$

$0.250 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{~mol} H C J$
*See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162 -9th edition) (p 156-164-10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?
O.OS5S maul HEl $=L$
$0.657 \mathrm{~mol} \mathrm{hCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{11.8 \mathrm{~L}}{11800 \mathrm{~mL}}$
This is too large a volume for lab-scale work. To get a more reasonable volume, we should use a more concentrated solution ... like the 6.00 M HCl described below!
What if we used 6.00 M HCl ?

$$
6,00 \mathrm{~mol} H C l=L
$$

$$
0.657 \mathrm{mul} \mathrm{HCl} \frac{L}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 . \mathrm{mL}}
$$

110 mL is a reasonable volume for lab-scale work. We can measure this out easily in a 250 mL cylinder.

