MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution
<dissolved substance

$$
\begin{gathered}
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOLUTION }} \\
6,0 \mathrm{M} \mathrm{HCl} \text { solution: } \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{gathered}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
\begin{gathered}
6.0 \mathrm{~mol} \mathrm{HCl}=L \\
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{~mol} \mathrm{HCl}
\end{gathered}
$$

* See SECTIONS 4.7-4.10 for more information about MOLARITY and solution calculations (p 154-162, 9th edition) (p 156-164, 10th edition)

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?
$0.0555 \mathrm{~mol} \mathrm{HCl}=L$
$0.657 \mathrm{mul} \mathrm{HCl} \times \frac{L}{0.0655 \mathrm{~mol} \mathrm{HCl}}=$
This volume is much too large for lab-scale work.

11800 mL You should use a more concentrated solution for this application.

$$
\begin{aligned}
& 6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \\
& 0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{110 \mathrm{~mL}}
\end{aligned}
$$

110 mL is a volume that easy to measure with our lan equipment! (250 mL cylinder)

Example: How would we prepare $500 . \mathrm{mL}$ of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

> volumetric flask

We know that we need 500 . mL of solution, and we also know that the concentration should be 0.500 M . From that, we can calculate the moles of sodium sulfate we should dissolve. Then, we can convert that to mass using formula weight.

$$
\begin{aligned}
& 0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{L} \mid \mathrm{mL}_{\mathrm{L}}=10^{-3 \mathrm{~L}} \quad 142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \\
& \mathrm{SOO} . \mathrm{ml} \times \frac{10^{-3} \mathrm{~L}}{m \mathrm{~L}} \times \frac{0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{L} \times \frac{142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{3 \mathrm{~S}, \mathrm{~S}_{9}}{\mathrm{Na}_{2} \mathrm{SO}_{4}}
\end{aligned}
$$

So, to prepare the solution we weigh out 35.5 grams of sodium sulfate, put that into the 500 mL flask, and fill to the mark with distilled/deionized water.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
(2 "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=$
$\begin{aligned} & \text { before } \\ & \text { diution }\end{aligned}$
$\begin{aligned} & \text { after } \\ & \text { dilution }\end{aligned}$

97

$$
M_{1} V_{1}=M_{2} V_{2} \ldots \text {.. the "DILUTION EQUATION" }
$$

$M_{1}=$ molarity of concentrated solution
$V_{1}=$ volume of concentrated solution
M_{2} = molarity of dilute solution
$V_{2}=$ volume of dilute solution (total volume, nut volume af $\begin{gathered}\text { added solvent!) } \\ \text { added }\end{gathered}$
The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
&(0.500 \mathrm{~m})\left(V_{1}\right)=(0.333 \mathrm{~m})(150 . \mathrm{mL}) \\
& V_{1}=99.9 \mathrm{~mL} \text { of } 0.800 \mathrm{M} \mathrm{Na} \mathrm{~N}_{2} 80_{4}
\end{aligned}
$$

To prepare the solution, measure out 99.9 mL of the 0.500 M solution, add enough water to increase the volume to 150 mL . (Ideally, add the 99.9 mL of stock solution to a 150 mL volumetric flask and fill the rest of the way with distilled water!)

