- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS
- Polyatomic ions form ionic compounds in the same way that single-element ions do.

- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

3 kinds:
(1) Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!
Mg^{2+} : "magnesium ion"

Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

$$
\begin{aligned}
& \mathrm{Fe}^{2+}: \text { "iron(II) ion" } \mathrm{Cu}^{+} ? ~ " c o p p e r(I) ı o n " \\
& \mathrm{Fe}^{3+}: \text { "Iron(III) ion" }
\end{aligned}
$$

Polyatomic cations

- Memorize list.
NH_{4}^{+}: "ammonium ion"

ANIONS
2 kinds
(1) Main-group nonmetals

- Use the STEM NAME of the element, then add "-ide" suffix

$$
\begin{array}{ll}
\mathrm{N}^{3-}: \text { "nitride" ion } & \mathrm{P}^{3-}: \text { "phosphide ion" } S^{2 "} \text { : sulfide } \mathrm{i} \mathrm{un}^{2} \\
\mathrm{O}^{2-}: \text { "exide ion" } & \mathrm{F}^{-} \text {: "fluoride ion" }
\end{array}
$$

(2.) Polyatomic ions

- Memorize list.(see web site)
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$: "acetate ion" SO_{4}^{2-} : "sulfate ion"
$\mathrm{NO}_{3}{ }^{-}$: "nitrate ion" SO_{3}^{2-} "sulfite ion"
NO_{2}^{-}: "nitrite ion"

* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

Remember to include the Roman numeral for CHARGE in the name of a transition metal compound!
Page 63 (9th edition), page 64 (10th edition): Chart of polyatomic ions

$$
T i S_{2} \sqrt{\frac{T_{i}^{4+} S^{2-}}{S^{2-}}}
$$

titanium(IV) sulfide
iron(II) carbonate
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
barium phosphate Spelling matters!
$\mathrm{Ba}_{3} \mathrm{P}_{2}$ barium phosphide

DETERMINING THE FORMULA OF AN IONIC COMPOUND FROM THE NAME

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:
iron(III) carbonate

$$
\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}
$$

potassium sulfide

$$
K^{+} S^{\overline{2}}
$$

k^{+} $k_{2} S$
calcium bromide

$$
\mathrm{Ca}^{2+}
$$

Br
Br^{-}
CaBr_{2}

Be careful with HYDROXIDES and CYANIDES ... to indicate more he ion!

HYDRATES

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.
- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)
- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated
copper (II) sulk ute pentuhydrate

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements
(2) ACIDS
- molecular compounds that dissolve in water to release ${ }^{+}$ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:
(1) BINARY ACIDS

- contain hydrogen and one other element
(2) OXYACIDS
- contain hydrogen, OXYGEN, and another element

