$0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$... Find the pH of the solution

$$
\mathrm{NH}_{4} \mathrm{Cl}_{\rightarrow} \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}
$$

Is the salt acid, basic, or neutral?
This is the WEAK BASE ammonia.

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{Cl}^{-}: \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \not \pm \boxed{\mathrm{HCl}}+\mathrm{OH}^{-} \\
& \text {This is the STRONG ACID hydrochloric } \\
& \text { acid, It completely ionizes in water, } \\
& \text { meaning that the molecule doesn't } \\
& \text { exist in water - and that chloride ion } \\
& \text { is NOT a good proton acceptor. } \\
& \text { We need to solve the following equilibrium: }
\end{aligned}
$$

$$
\mathrm{NH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

This is the only reaction from the two above that will actually influence the pH (since the second one doesn't actually occur!)

165
$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Check the ions formed to see whether they're acidic or basic.
$N+$, Not a B-L acid (since it has no H to donate). Not likely to be a proton

- acceptor either (a B-L base) due ti the positive charge and the fact that it's a simple metal ion.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ ". Has hydrogen, but also has a negative charge. Since it's negatively

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
$$

Acetic acid is stable in water, so we expect that the acetate ion can function as a proton acceptor.

$$
\begin{aligned}
& K_{b, C_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]} \\
& \mathrm{Kb} \text { for acetate isn't in the chart at } \\
& \text { the back of the book, but Ka for } \\
& \text { acetic acid (its conjugate) is! } \\
& \mathrm{Ka}_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.7 \times 10^{-5} \\
& K_{a} \times K_{b}=1.0 \times 10^{-14} \text {, so } K_{b}=5.88 \times 10^{-10}
\end{aligned}
$$

166

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& \mathrm{K}_{1} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10}
\end{aligned}
$$

Solve this just like solving for the pH of any other weak base:

Species	[Init $]$	Δ	$\left[E_{\text {quail }}\right]$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+x$	x
OH^{-}	0	$+x$	x
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	0.100	$-x$	$0.100-x$
X^{2}	$=5.88 \times 10^{-10}$	$x=7.67 \times 10^{-6}=\left[0 H^{-}\right]$	

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=5.88 \times 10^{-10} \\
& \downarrow \begin{array}{l}
x<\angle 0.100 \\
0.100-x
\end{array} 0.100 \\
& \frac{x^{2}}{0.100}=5.88 \times 100^{-10}
\end{aligned}
$$

$$
x=7.67 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]
$$

We need pH ... but keep in mind that we just calculated HYDROXIDE

$$
\begin{aligned}
& \text { concentration! } \\
& \mathrm{POH}=-\log \left(7,67 \times 10^{-6}\right)=5.12
\end{aligned}
$$

Since $p H+p O H=14, \ldots$

$$
P H=8.88
$$

Compare:
$\mathrm{pH}=7.00$ for pure water
$\mathrm{pH}=11.13$ for 0.100 M ammonia
$\mathrm{pH}=13.00$ for 0.100 M strong base (like NaOH)

168

$$
\begin{aligned}
& \text { O. } 100 \mathrm{M} \mathrm{NaCl}, \text { Find } \mathrm{pH} \\
& \mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

Check the ions formed to see if they; re acidic or basic:

$$
N a^{+} \text {: Sodium ion has no H, so it's not capable of being a B-L acid. } \begin{aligned}
& \text { Unlikely to be a B-L base due to the positive charge. } \\
& \text { Chloride ion can't be a B-L acid (no H to donate). Might be } \\
& \text { a B-L base, since it's negatively charged and could conceivably } \\
& \text { attract protons. }
\end{aligned}
$$

Since neither sodium ion nor chloride ion affect the water equilibrium, the water equilibrium itself sets the pH , and the pH will be the same as the pH of pure water: 7.00

169 POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a 3}=4.8 \times 10^{-13}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.
${ }^{170}$ Solving the equilibrium of phosphoric acid's first proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{K}_{4}=6,9 \times 10^{-3} \\
& \mathrm{Ka}^{2}=6.9 \times 10^{-3}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}
\end{aligned}
$$

Species	$\left[I_{\text {mit }}\right]$	Δ	$\left[E_{q u 1} 1\right]$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{4}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.10-x$

$x^{2}=6.9 \times 10^{-3}$ This time, weill solve with the quadratic equation. Were not as confident that ' x ' is small... (compare 0.1 to Ka)

$$
\begin{aligned}
& x^{2}=0.00069-0.0069 x \\
& x^{2}+0.0069 x-0.00069=0 \\
& a=1 \quad b=0.0069 \quad c=-0.00069 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x=\frac{-0.0069 \pm 0.0529868882}{2}
$$

Ignore the negative root ... negative values for x make no sense here...

$$
x=0.0230=\left[\mathrm{ki}_{3} \mathrm{O}^{+}\right]
$$

$$
p H=1.64
$$

${ }^{171}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate solid into enough water to make 250 . mL of solution.

Find out the nature of the salt. Acidic? Basic? Neutral?

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-} \\
& \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{3}+\mathrm{OH}^{-} \begin{array}{l}
\text { Nitric acid is a strong acid, so } \\
\text { NITRATE ION should be NEUTRAL }
\end{array} \\
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \begin{array}{l}
\text { Ammonia is a WEAK BASE, so } \\
\text { AMMONIUM ION should be }
\end{array} \\
& \text { AMMONIUM ION should be ACIDIC } \\
& \begin{array}{l}
\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O} \\
\mathrm{~K}_{4_{1} \mathrm{NH}_{4}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}
\end{array} \\
& \mathrm{Kan}_{1} \mathrm{NH}_{4}{ }^{+} \\
& K_{b} \mathrm{NH}_{3}=1.8 \times 10^{-s}(p \mathrm{~F}-14) \\
& \left(\mathrm{K}_{1}, \mathrm{NH}_{4}{ }^{+}\right)\left(1.8 \times 10^{-5}\right)=1.0 \times 10^{-14} \\
& K a, N H_{4}{ }^{+}=S . S 6 \times 10^{-10}
\end{aligned}
$$

$\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{4}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.56 \times 10^{-10}$

Species	[Init]	Δ	[Equal]
NH_{3}	0	$+x$	
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	
NH_{4}^{+}	0.14990	$-x$	

Calculate initial ammonium concentration

$$
\begin{aligned}
& 3.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \times \frac{\mathrm{molNH} \mathrm{NNO}_{3}}{80.052_{\mathrm{g}} \mathrm{NH}_{4} \mathrm{NO}_{3}}= \\
& =0.0324256408 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& M=\frac{0.0374256408 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{0.250 \mathrm{~L}} \\
& M=0.14990 \mathrm{~m}
\end{aligned}
$$

Solve..

$$
\begin{gathered}
\frac{x^{2}}{0.14990-x}=5.56 \times 10^{-10} \\
x<0.64990 \\
\frac{x^{2}}{0.14990}=5.86 \times 10^{-10}
\end{gathered}
$$

$$
x=9.13 \times 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
p H=S .04
$$

Seems okay for an acidic salt pH

THE COMMON-ION EFFECT

- is the effect on the ionization of a compound caused by the presence of an ion involved in the equilibrium
- is essentially Le Chateleir's Principle applied to equilibria involving ions
ex: $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}{ }^{t}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{K}_{b}=1.8 \times 10^{-5}$

From previous calculations, we know that an 0.10 M solution of ammonia has a pH of 11.13.

What would happen to the pH if we dissolved ammonium chloride into the solution?
$\mathrm{NH}_{4}\left(\mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}{ }^{+}\left(\mathrm{aqq}_{q}\right)+\mathrm{Cl}^{-}(\mathrm{aq})\right.$
The ammonium chloride provides the ammonium ion. According to Le Chateleir's principle, this would shift the ammonia equilibrium to the LEFT!

What would happen to the pH ? Let's find out!

