${ }^{146}$ (A) What is the concentration of hydronium ion in an aqueous solution whose pH
is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
A)

$$
\begin{aligned}
& \mathrm{PH}=10,5 \mathrm{SO},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=? \\
& 10^{-\mathrm{PH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10,50}=3.2 \times 10^{-11} \mathrm{mH} \mathrm{H}_{3}{ }^{+}}
\end{aligned}
$$

B)

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =1.0 \times 10^{-141} \\
\left(3.2 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right] & =1.0 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right] } & =3.2 \times 10^{-4} \mathrm{M} \mathrm{OH}
\end{aligned}
$$

C)

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{~N}_{a}{ }^{+}+\mathrm{OH}^{-} \begin{array}{l}
\text { Sodium hydroxide is a STRONG BASE } \\
\text { and should ionize completely. }
\end{array} \\
& {\left[\mathrm{NaOH}_{n \cdot \mathrm{~m} \mid \mathrm{mal}}=\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4} \mathrm{M}\right.}
\end{aligned}
$$

What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution?

$$
\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}
$$

Find molar cocentration of the NaOH solution:
2.

Sodium hydroxide is a STRONG BASE. We expect it to completely ionize in water - controlling the amount of hydroxide present.

$$
\begin{aligned}
& {\left[\mathrm{HzO}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& {\left[4_{30}+2\right](0.125)=1,0 \times 10^{-14}} \\
& {\left[430^{+}\right]=8.0 \times 10^{-14}} \\
& P H=13.10
\end{aligned}
$$

$$
\begin{aligned}
& M=\frac{\text { mum } \mathrm{NaOH}}{\operatorname{Ln} \text { solution }} \leftarrow 0.5000 \mathrm{~L}(500.0 \mathrm{mi}) \\
& \text { 2.SOg NaOHx } \frac{\text { mol } \mathrm{NaOH}}{40.00 \mathrm{gNaOH}}=0.0625 \mathrm{~mol} \mathrm{NaOH} \\
& M=\frac{\text { mum NaH }}{L_{\text {solution }}}=\frac{0.0 G 25 \text { mol } \mathrm{NaOH}}{0.5000 \mathrm{~L}}=0.125 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{A}^{-} \\
& \left.\quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{b} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \left.\mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=5.1 \times 10^{-4} \right\rvert\, \begin{array}{l}
\text { values for Ka } \\
\text { are determined } \\
\text { experimentally }
\end{array} \\
& \text { pH of the solution? }
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { (We look this number up in a table } \\
\text { of acid ionization constants) }
\end{array}
\end{aligned}
$$

What is the pH of the solution?
To find the pH , we need to determine the concentration of hydronium, $\left[\mathrm{H}_{3} \mathrm{O}^{t}\right]$
... so we need to solve the equilibrium expression. But we don't know all of the concentrations AT EQUILIBRIUM to do so!
... but they ARE related! \qquad We assume the amount of hydronium from the water

... this is similar to the problems from the equilibrium chapter!

151

$$
\begin{aligned}
& \text { S.1 } \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}-\right]}{\left[\mathrm{HNO}_{2}\right]} \\
& \text { S.1 } \times 10^{-4}=\frac{(x)(x)}{(0,100-x)} \\
& \text { S.1 } \times 10^{-4}=\frac{x^{2}}{0.100-x} \mathrm{We}
\end{aligned}
$$

Quadratic equation:

$$
a x^{2}+b x+c=0
$$

We can solve this by the quadratic equation or ...
based on the value of the equilibrium constant, we assume that x is going to be very small compared to 0.100

How do we know when it's "safe" to assume that the difference is ignorable?

This assumption is usually OK provided the K value and the initial concentration differ by at least a factor of 1000 . If that's not so - it's safer to just use the quadratic (which will always work...)
Sop

Solving this problem with the quadratic equation gives a pH of 2.16 ... which is not significantly different from the caclulated-with-assumption pH of 2.15 .

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.15$

Let's compare the pH of the weak nitrous acid with the pH of a stop acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}- \\
\mathrm{O}_{2} 10 \mathrm{MHNO},\left[\mathrm{H}_{3} \mathrm{OH}^{+}\right]=0.10 \\
\mathrm{PH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{153}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5} \quad(p \mathrm{~A}-14 \text {, Ebbing } 9 \text { th })
$$

What is the pH ?

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{\prime}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-\mathrm{S}}
\end{aligned}
$$

We need to solve this, but which one of these terms are we interested in?

We want to solve for HYDROXIDE ION, since it's closely related to pH .

Specie	[Initial]	Δ	[Equilibrium]
NH_{4}^{+}	O	$+X$	X
OH^{-}	0	$+X$	X
NH_{3}	0,100	$-X$	$0,100-X$

Plus into the equilibrium expression:

$$
1.8 \times 10^{-5}=\frac{(x)(x)}{(0.100-x)}=\frac{x^{2}}{0.100-x}
$$

154

$$
\begin{aligned}
& \text { This is a QUADRATIC EQUATION. We could use the } \\
& \text { quadratic formula, OR we could assume that ' } x \text { ' } \\
& \text { is small relative to } 0.100 \text {... } \\
& \downarrow 0,100-x \approx 0,100 \\
& 1.8 \times 10^{-5}=\frac{x^{2}}{0,100} \\
& \text { Be careful ... this is HYDROXIDE } \\
& \text { concentration, not hydronium } \\
& \text { concentration! } \\
& x=0.0013416 \mathrm{M} \mathrm{OH}^{-} \\
& \mathrm{POH}=-\log _{10}(0.0013416)=2.87 \\
& p_{4}=14,00-2.87=11.13
\end{aligned}
$$

V If we had solved the problem using the quadratic equation, we would have gotten an answer of 11.13. In other words, there's no difference to two significant figures.

