An 8.00 L reaction vessel at 3900C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of all species at equilibrium.

$$N_2(g) + O_2(g) = 2NO(g) Kc = 0.0123$$

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) K_c = 0.0123$$

$$\begin{cases} C = 0.0123 = \frac{CNo^{2}}{CN_2CO_2} \end{cases}$$
 We need to express all the concentrations in terms of a single variable.

Species	[Initial]		[Equilibrium]
N_{z}	8.00L = 0.10625	~X	0.10625-X
02	25901.0 = 100.8	- X	ο.ιο6 ες - χ
NO	0	t2x	2 x

$$\frac{[N_0]^2}{[N_2][0_2]} = \frac{(2x)^2}{(0.10625-x)(0.10625-x)} = 0.0123$$

We need to solve this expression for 'x' to find our conecntrations.

$$\frac{(2x)^2}{(0.10625-x)(0.10625-x)} = 0.0123$$

$$\sqrt{\frac{(2*)^2}{(0.10625-*)^2}} = \sqrt{0.0123}$$

You may solve this problem using either the quadratic formula or, (easier) taking the square root of both sides.

$$2 \times = 0.1109053651(9.10625-4)$$

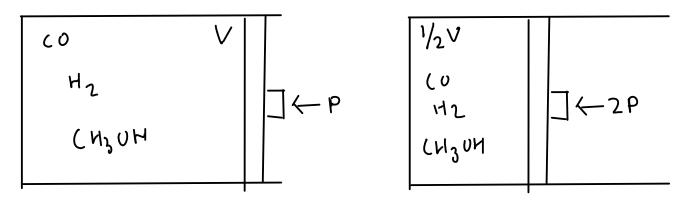
 $2 \times = 0.011783695-0.1109053651 \times$

x = 0.0055822943

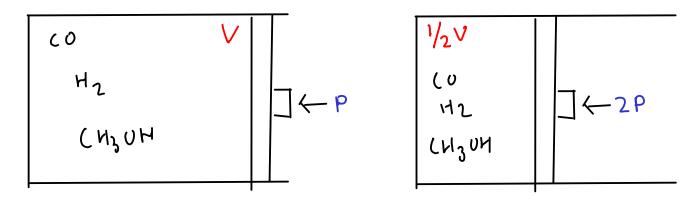
Now, we use 'x' to find the equilibrium concentrations:

$$N_2$$
: 0.10625 - χ = 0.101 M N_2
 O_2 : 0.10625 - χ = 0.101 M O_2
 N_3 : 0.10625 - χ = 0.101 M N_3
 O_4 : 0.10625 - χ = 0.101 M O_2

Remember, Kc = 0.0123


We expect reactants to dominate at equilbrium

Species	[Gyvilibeium]		
N_{z}	0.10625-X		
02	χ-25301.0		
NO	2x		


- Pressure can affect a GAS-PHASE equilibrium ... sometimes. How?

$$(O(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

- ... how might pressure affect this equilibrium?
- If the change in pressure CHANGES CONCENTRATIONS, then this equilibrium would be disturbed and Le Chateleir's Principle would apply.
 - Adding an INERT GAS would change pressure, but would it change concentration of the gases? NO so addition of argon would have no effect on the equilibrium!
 - What about COMPRESSION?

... compression increases pressure by DECREASING total volume.

... but this volume change affects ALL concentrations the same way. In this example, each concentration is DOUBLED.

$$(O(g) + 2H_2(g) \rightleftharpoons (H_3OH(g))$$

$$(I) = \frac{(I)}{(I)(I)^2} = \frac{(I)}{(I)(I)^2}$$
For simplicity, let's assume Kc = 1, and all concs = 1M

$$\frac{Doubling}{gives Q = (2)(2)^2} = \frac{1}{4}$$

Q < Kc, so equilibrium shifts to the RIGHT, forming more methanol at the expense of hydrogen and carbon monoxide.

In general, compressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with fewer moles of gas. This causes the pressure to decrease.

In general, decompressing an equilibrium reaction in the gas phase will cause the equilibrium to shift towards the side with more moles of gas. This causes the pressure to increase.

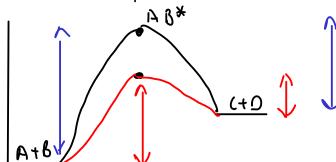
HOWEVER, this can only be true IF there's a side of the reaction with more moles of gas than the other. If both sides of the reaction have the SAME number of moles of gas, then a pressure change will NOT affect the equilibrium.

Example:
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

... would not respond to a pressure change.

FACTORS THAT MAY AFFECT EQUILBRIUM

1) TEMPERATURE (effect depends on whether reaction is endothermic or exothermic)


- Changes rate of reaction, too!

... changes Kc

PRESSURE - only for gas-phase reactions which have different numbers of moles of gas on each side of the equilbrium. Otherwise, no effect.

... no change of Kc

(3) CATALYSTS - do NOT affect equilibrium, but make the equilbrium state occur more quickly.

The catalyst raises BOTH forward and reverse rates, so it doesn't affect the composition of the equilibrium mixture!

CONCENTRATION - Le Chateleir's Principle applies for changing concentrations. An equilibrium will shift to counteract a change in concentration of reactant or product.

... doesn't change Kc.