\qquad

Lead is MORE ACTIVE than hydrogen, so we would expect lead to replace hydrogen in hydrochloric acid.

Since zinc is MORE ACTIVE than lead, we expect it to replace lead in lead(II) nitrate.

$$
\stackrel{\mathrm{Ag}\left(\mathrm{~s}^{2}\right)+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \text { NO REACTiON }}{ }
$$

Silver is LESS ACTIVE that hydrogen, so it would not be able to give its electrons to hydrogen and replace it in sulfuric acid.

$$
\mathrm{Mg}_{\mathrm{g}}(\mathrm{~s})+\mathrm{Zn}_{\lambda} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{Zn}_{n}(\mathrm{~s})
$$

We expect magnesium to replace zinc .. it's more active.

Chemical equations are written and balanced in terms of ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

$$
\mathbb{I N G}_{-\mathrm{NO}_{3} \text { solid }} \mathrm{HCl}_{\text {solution }}
$$

... so how do we relate atoms and molecules with things we routinely measure in lab - like grams and milliliters?

- A "mole" of atoms is 6.022×10^{23} atums
- Why - in the metric dominated world of science - do we use such a strange number fo quantity of atoms?

The mole is also defined as the number of carbon-12 atoms in exactly 12 g of carbon- 12
carbon-12

- Why define the mole based on an experimentally-measured number?
- The atomic weight of an element (if you put the number in front of the unit GRAMS) is equal to the mass of ONE MOLE of atoms of that element!

the mass of ONE MOLE of naturally-occurring carbon atoms

Magnesium (Mg): $24.31 \mathrm{~g}=$ the mass of ONE MOLE OF MAGNESIUM ATOMS

- So, using the MOLE, we can directly relate a mass and a certain number of atoms!
- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

$$
M_{g}=24.31 \mid 24.31 \mathrm{~g} \mathrm{mg}=1 \underbrace{}_{\text {"mol is the }} \mathrm{mg}^{\mathrm{mol}}
$$ abbreviation for "mole"

Example: How many moles of atoms are there in 250. g of magnesium metal?

$$
\begin{gathered}
24.31 \mathrm{~g} \mathrm{mg}=\text { mol } M g g \\
250 . g \mathrm{~g} \mathrm{~g} \times \frac{\text { mol } \mathrm{Mg}_{\mathrm{g}}}{24.31 \mathrm{~g} \mathrm{mg}}=10.3 \mathrm{~mol} \mathrm{Mg}
\end{gathered}
$$

131
Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

Fe: SS .85

$$
\begin{gathered}
55.85 \mathrm{~g} \mathrm{Fe}=\mathrm{molFe} \\
1.75 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{\mathrm{molFe}}=97.7 \mathrm{gFe}
\end{gathered}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
& \left(\mathrm{H}_{2} \mathrm{O}\right) \\
& \begin{array}{l}
\mathrm{H}_{2} \mathrm{O}: 2 \times 1.008=2.016 \\
\mathrm{O}: \frac{1 \times 16.00}{}=16.00 \\
18.016
\end{array} \\
& \left.18.016_{\mathrm{g}} \mathrm{H}_{2} \mathrm{O}=\mathrm{mu}\right\} \mathrm{H}_{2} \mathrm{O}
\end{aligned} \quad \begin{aligned}
& \text { FORMULA WEIGHT of water } \\
& \begin{array}{l}
\text { Formula weight = mass of one mole of } \\
\text { either an element OR a compound! }
\end{array}
\end{aligned}
$$

$$
25.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mul} \mathrm{H}_{2} \mathrm{O}}{18.01 \mathrm{~g}_{\mathrm{g}} \mathrm{H}_{2} \mathrm{O}}=1.39 \mathrm{mul} \mathrm{H} \mathrm{O}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it;s called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

133
Example: How many grams of ammonium carbonate do we need to weigh out to get 3.65 moles of ammonium carbonate?

$$
\begin{aligned}
& \text { First, find the correct formula: } \\
& N: 2 \times 14.01 \\
& \mathrm{NH}_{4}{ }^{+} \mathrm{CO}_{3}{ }^{2-} \\
& H: 8 \times 1.008 \\
& C: 1 \times 12,0 \mid \\
& \frac{\mathrm{NH}_{4}{ }^{+}}{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}} \\
& 0: 3 \times 16.00 \\
& 96.094 \begin{array}{l}
\text { Formula weight of } \\
\text { ammonium carbon }
\end{array} \\
& \text { ammonium carbonate } \\
& 96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \\
& \text { 3.65mol (NH) } \mathrm{CO}_{3} \times \frac{96.094 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}{\operatorname{mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}}=3 \mathrm{SIg}^{\left(\mathrm{WH}_{4}\right)_{2} \mathrm{CO}_{3}}
\end{aligned}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of ammonium nitrate.

$$
\begin{aligned}
& \underline{\mathrm{NH}_{4} \mathrm{NO}_{3}:} \mathrm{N}: 2 \times 14.01=28.02 \\
& H: 4 \times 1.008=4.032 \\
& 0: 3 \times 16.00=\frac{48.00}{80.052 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}=\mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{3}} \\
& \begin{array}{l}
0 / N=\frac{28.02 \mathrm{gh}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=35.0 \% \mathrm{~N} \\
\% H=\frac{4.032 \mathrm{gH}}{80.052 \mathrm{~g} \text { total }} \times 100 \%=5.0 \% \mathrm{H} \\
\% 0=\frac{48.00 \mathrm{~g} 0}{80.052 \mathrm{~g} \text { total }} \times 100 \%=60.0 \% \mathrm{O}
\end{array} \\
& \text { These } \\
& \text { percentages } \\
& \text { SHOULD sum } \\
& \text { to } 100 \% \text { within } \\
& \text { roundoff error. }
\end{aligned}
$$

So far, we have
ch $8\left[\begin{array}{l}\text { - looked at how to determine the composition by mass of a compound } \\ \text { from a formula } \\ \text { - converted from MASS to MOLES (related to the number of atoms/molecules) } \\ \text { - converted from MOLES to MASS }\end{array}\right.$

Are we missing anything?
Sec - What about SOLUTIONS, where the desired chemical is not PURE, but 15.4 found DISSOLVED IN WATER?
p 483 -- How do we deal with finding the moles of a desired chemical when it's in 488 solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{gathered}
M=\text { MOLARITY }=\frac{\text { moles of solute }}{\text { L solution }} \\
6, O \mathrm{MHCl} \text { solution: } \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{gathered}
$$

There are 6.0 moles of hydrochloric acid in each liter of this solution, so you can write this relationship another way:

$$
6.0 \mathrm{~mol} \mathrm{HCl}=1 \mathrm{~L}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
\Leftrightarrow G .0 \mathrm{~mol} \text { Hel }=L
$$

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{~mol} \mathrm{HCl}}{L}=1.5 \mathrm{~mol} \mathrm{HCl}
$$

137
If you need 0.657 moles of hydrochloric acid, how many milliliters of 0.0555 M HCl do you need to measure out?

$$
0.055 S \mathrm{mal} \mathrm{HCl}=\mathrm{L} \quad m L=10^{-3} \mathrm{~L}
$$

$0.657 \mathrm{~mol} \mathrm{HC} \times \frac{\mathrm{L}}{0.055 \mathrm{mal} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=11800 \mathrm{~mL}$
This is a very large volume for lab-scale work. We should use a more concentrated solution to get this amount
What if we used 6.00 M HCl ? of HCl .

$$
\begin{aligned}
& 6.00 \mathrm{molHCl}=\mathrm{L} \quad \mathrm{~mL}=10^{-3 \mathrm{~L}} \\
& 0.657 \mathrm{molHCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{m \mathrm{~L}}{10^{-3} \mathrm{~L}}=110 . \mathrm{mL}
\end{aligned}
$$

This volume can be measured easily with a 250 mL graduated cylinder ... plus, we're likely to have this much solution available in the first place!

If you're preparing a solution by dissolving a solid in water, you can easily calculate the molarity of the solution. How?
Just find the number of moles of solid you dissolved, then divide by the volume of the solution (expressed in liters!)

What is the molarity of a solution made by dissolving 3.50 g of NaCl in enough water to make 250. mL of solution?

$$
M=\frac{\operatorname{mol~} \mathrm{Na}(\}}{L \text { solution }}
$$

1 - Convert 3.50 grams of NaCl to moles using the formula weight.
2 - Divide moles $\mathrm{NaCl} /$ LITERS of solution. (Convert 250 mL to L)

$$
\begin{aligned}
& \text { Nail: Na: } 1 \times 22.99 \\
& \text { Cf: } \frac{1 \times 35.45}{58.44 \mathrm{NaCl}}=\operatorname{mol~} \mathrm{NaCl} \\
& \text { (1) } 3.50 \mathrm{~g} \mathrm{NaCl} \times \frac{\text { mol } \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}=0.059890486 \mathrm{~mol} \mathrm{NaCl} \\
& m L=10^{-3} L \\
& 250 . m L \times \frac{10^{-3} L}{m L}=0.250 \mathrm{~L} \\
& 3.50 \mathrm{~g} \mathrm{NaCl} \boldsymbol{\sim} \text { to prepare } \\
& \text { lab } \\
& \text { (2) } \mathrm{Na}=\frac{\mathrm{mol} \mathrm{NaCl}}{\mathrm{~L} \text { solution }}=\frac{0.059890486 \mathrm{~mol} \mathrm{NaCl}}{0.250 \mathrm{~L}}=0.240 \mathrm{MNaCl}
\end{aligned}
$$

${ }^{139}$ A few more examples...
You have a 250 Use FORMULA WEIGHT when relating mass and moles \longleftarrow You have a 250 g bottle of silver (I) chloride (AgCl). How many moles of AgCl do you have?

$$
\begin{aligned}
\mathrm{AgCl}: \mathrm{Ag}_{\mathrm{g}} & : 1 \times 107.9 \\
C l & : \frac{1 \times 35.45}{143.35 \mathrm{~g} \mathrm{AgCl}}=\mathrm{mol} \mathrm{AgCl}
\end{aligned}
$$

$$
250 . \mathrm{g} \mathrm{AgCl} \times \frac{\mathrm{mol} \mathrm{AgCl}}{143.35 \mathrm{~g} \mathrm{AgCl}}=1.74 \mathrm{~mol} \mathrm{AgCl}
$$

How many moles of NaOH are present in 155 mL of 1.50 M NaOH ?
When relating moles and VOLUME, we need to use CONCENTRATION (usually MOLARITY - M)

$$
\begin{aligned}
& m L=10^{-3} L \quad 1.50 \mathrm{~mol} \mathrm{NaOH}=L \\
& 15 S \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{\mathrm{~mL}} \times \frac{1.50 \mathrm{~mol} \mathrm{NaOH}}{L}=0.233 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A 1=3 \text { molecules } B r_{2}=2 \text { formula units } A \mid B r_{3}}{2 \text { mol } A l=3 \text { mol } B s_{2}=2 \text { mol } A \mid B r_{3} *}
$$

- To do chemical calculations, we need to:
(1) - Relate the amount of substance we know (mass or volume) to a number of moles
(2) - Relate the moles of one substance to the moles of another using the equation
(3) - Convert the moles of the new substance to mass or volume as desired

$$
142\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine? How many grams of aluminum bromide would be produced?

$$
\begin{aligned}
& \text { (1) Convert the } 25.0 \mathrm{~g} \text { of bromine to moles. Use formula weight. } \mathrm{Br} r_{2}: \frac{2 \times 79.90}{159.8} \\
& \text { is 9.8 } \mathrm{g} r_{2}=\mathrm{mol} B r_{2} \\
& 25.0 \mathrm{~g} B r_{2} \times \frac{\text { mol } B r_{2}}{159.8 \mathrm{~g} \mathrm{Br}_{2}}=0.1564455569 \mathrm{~mol} B r_{2}
\end{aligned}
$$

(2) Convert the moles bromine to moles aluminum. Use chemical equation. 2 mol $A 1=3$ mol $B r_{2}$

$$
0.1564455569 \mathrm{~mol} B r_{2} \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}=0.104297038 \mathrm{~mol} A 1
$$

(3) Convert the moles aluminum to mass. Use formula weight. A1:26.98 $26.98 \mathrm{~g} \mathrm{Al}=\mathrm{mol} A l$

$$
0.104297038 \mathrm{~mol} A 1 \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\operatorname{mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
$$

${ }^{143}$ You can combine all three steps on one line if you like!

$$
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.8 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{gAl}
$$

$$
\begin{aligned}
& 25.0 \text { y } \mathrm{Br}_{2} \mathrm{KC} \\
&+ 2.81 \mathrm{~g} \mathrm{Al} \\
& \hline 27.8 \mathrm{~g} \mathrm{AlBr}
\end{aligned}
$$

But ...
...what would you have done to calculate the mass of aluminum bromide IF you had NOT been asked to calculate the mass of aluminum FIRST?

Calculating the mass of aluminum bromide directly:

$$
\begin{aligned}
& A \backslash B r_{3}: A 1=1 \times 26.98 \\
& \text { Br: }=\frac{3 \times 79.90}{266.68}
\end{aligned}
$$

144 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles using formula weight.
2 - Convert moles sodium carbonate to moles HCl using chemical equation.
3 - Convert moles HCl to volume HCl using concentration ($6.00 \mathrm{~mol} / \mathrm{L}$)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}_{4}: 2 \times 22.49 \\
& \mathrm{C}: 1 \times 12.01 \\
& 0: \frac{3 \times 16.00}{105.99 \mathrm{gNa}_{\mathrm{a}_{2}} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}
\end{aligned}
$$

(1) $25.0 \mathrm{~g} \mathrm{Na} \mathrm{alO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{gNa}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na} \mathrm{Na}_{3}$

$$
2 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

(2)

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

145 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 g sodium carbonate to moles using formula weight.
2 - Convert moles sodium carbonate to moles HCl using chemical equation.
3 - Convert moles HCl to volume HCl using concentration ($6.00 \mathrm{~mol} / \mathrm{L}$)

$$
\begin{align*}
& \text { (3) } 6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \quad \mathrm{LL}=10^{-3} \mathrm{~L} \\
& 0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{10^{-3 \mathrm{~L}}}=\begin{array}{l}
78.6 \mathrm{~mL} \\
0 f 6.00 \mathrm{M} \mathrm{HC1}
\end{array} \\
& \text { You can solve the problem on one line if you want: } \\
& 10 \mathrm{~S}_{1} 99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3} 2 \mathrm{~mol}_{\mathrm{HCl}}=\mathrm{mol} \mathrm{Nu}_{2} \mathrm{CO}_{3} \\
& 6.00 \mathrm{~mol} \mathrm{HCl}=L \quad m L=10^{-3} \mathrm{~L} \\
& 25.0 \mathrm{yNa}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{10 \mathrm{C} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}} \times \frac{\mathrm{mL}}{\mathrm{lo}^{-3 \mathrm{~L}}}= \\
& \text { (1) } \tag{2}\\
& \approx 78.6 \mathrm{mh}
\end{align*}
$$

