- It's simpler to talk about different reactions if we can classify them into a small number of classes.

- Most of these reaction classes are reactions that involve TRANSFER OF ELECTRONS from one atom to another. The LAST class or reactions we will discuss does NOT involve electron transfer!

) <u>COMBINATION REACTIONS</u>

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product

- Often involve large energy changes. Sometimes violent!

Example:

$$2 \text{ A}(s) + 3 \text{ Br}_2(l) \longrightarrow 2 \text{ A}(Br_3(s))$$

CLASSIFYING REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

- Form:
$$A \longrightarrow B + C + ...$$

Example:

$$2H_2O_2(\ell) \longrightarrow 2H_2O(\ell) + O_2(g)$$

* This reaction is NOT a combustion reaction, even though O₂ is involved!

* Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

CLASSIFYING REACTIONS

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (\hat{U}_2) to form OXIDES.

- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:
$$AB + Q_{2} \rightarrow AO + BO$$

Oxide: a compound containing OXYGEN and
one other element!
Examples:
 $*$ Combustion of
hydrocarbons makes
carbon dioxide and
water, if enough
oxygen is present.
In low-oxygen
environments, carbon
monoxide is made
instead!
 $2Mg(s) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.

- Can be predicted via an ACTIVITY SERIES (more on that later!)

- Form:
$$A + BC \longrightarrow AC + B$$

"A" and "B" are elements, often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

* Single replacement reactions are all examples of ELECTRON TRANSFER or OXIDATION-REDUCTION chemistry!

DOUBLE REPLACEMENT REACTIONS

- Also called "exchange" reactions

- The ions in two ionic compounds (one compound may also be an acid) EXCHANGE PARTNERS, forming two new compounds.

Form:
$$AB + CD \longrightarrow AD + CB$$

"A" and "C" are CATIONS "B" and "D" are ANIONS

- Can be predicted based on the characteristics of the potential products (More on that later!)

- Occur in AQUEOUS SOLUTION
- Do not involve electron transfer.

Examples:

Precipitation!