${ }^{178}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride and 29 mL of 18.1 M ammonia diluted to $150 . \mathrm{mL}$ with water.
acid: $\mathrm{NH}_{4}{ }^{+}$base: $\mathrm{NH}_{3} ; \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
To use the H -H equation, we need to know the nominal concentration of both the acid (ammonium ion) and the base (ammonia)

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=? \quad M_{1} V_{1}=M_{2} V_{2} \text {. The ammonia is DILUTED to make the buffer. }} \\
& (18.1 \mathrm{~m})(29 \mathrm{~mL})=m_{2}(150 . \mathrm{mL}) \\
& 3.499333333 \mathrm{~m}=\mathrm{M}_{2} \\
& \text { [} \mathrm{NH}_{4} \mathrm{t} \text {] =? } \quad \mid \mathrm{NH}_{4} \mathrm{Cl}: \mathrm{N} ? 1 \times 14.01 \\
& 30.2 \mathrm{~g} \mathrm{NHCl} \times \frac{\text { mol NHyCl }}{S 3.492 \mathrm{gNHyCl}}=0.8645704031 \mathrm{~mol} \\
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=\frac{0.5645704031 \mathrm{~mol}}{0.550 \mathrm{~L}}=3.763802687 \mathrm{~m} \mathrm{NH}_{4}{ }^{+}} \\
& \text {H: 4×1.008 } \\
& C 1=1 \times 35.45 \\
& 53.492 \mathrm{gNHul} / \mathrm{mol} \\
& K_{b}=1.8 \times 10^{-5}, K_{a}=5.56 \times 10^{-10} ; p V_{a}, \mu_{4}^{+}=9.26 \\
& p H=9.26+\log \left(\frac{3.499333333 \mathrm{mNH}_{3}}{3.763802687 \mathrm{mNH}_{4}{ }^{+}}\right)=9.22
\end{aligned}
$$

${ }^{179}$ BUFFER SELECTION

- Buffer pH is controlled by the pKa of the acidic species in the buffer.

$$
p H=p K_{a_{1, \text { acidil }}}+\log \left(\frac{\text { [basic species }]}{\text { [acidic species }]}\right)
$$

- Choose a buffer system so that the desired pH is within +/- 1 pH unit of the pKa
- You also need to ensure that the components of the buffer do not interact with your chemistry!

BUFFER PREPARATION

- many buffers are prepared by mixing specific amounts of both components of the Buffer system (acid / conjugate base or base / conuugate acid)

Some buffer "recipes" call for making the conjugate ion FROM the weak

$$
\begin{aligned}
& \text { acid or base ... by adding a STRONG acid or base! } \\
& \qquad \mathrm{NH}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}
\end{aligned} \begin{aligned}
& \text { The reaction of the strong } \\
& \text { acid with the weak base } \\
& \text { goes essentially to } \\
& \text { completion! }
\end{aligned}
$$

If you have more ammonia than nitric acid, you will end up with a solution containing a significant amount of both ammonia and ammonium ion ... a buffer!

BUFFER CAPACITY

- A buffer is good only as long as there is a significant concentration of both the acidic and basic species
- buffer capacity: how much acid or base can a buffer resist before losing its ability to buffer
- Buffer pH depends on the RATIO of acid to base!
$p H=p K_{a_{\text {, acidil }}}+\log \left(\frac{\text { [basic species.] }}{[\underline{\text { [acidic species] }]}) \mid} \begin{array}{l}\text { Henderson- } \\ \text { Hasselbalch } \\ \text { Equation }\end{array}\right.$ Ratio determines pH; the actual concentrations don't!
- So, if you make a buffer with 1.0M HA and 1.0M A-, it will have the same pH as a buffer with 2.0M HA and 2.0M A- but the 2M buffer will have a higher BUFFER CAPACITY it will resist more additions of acid or base.

181
Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane

Calculate the pH of a buffer made from 50 mL of 0.10 M fris and 50 mL of 0.15 M fris- HCl . Assume volumes add.

$$
p H=p K_{a_{1} \text { acidic }}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right)
$$

[bris]: $M_{1} V_{1}=M_{2} V_{2}(0.10 \mathrm{~m})(s 0, m L)=M_{2}(100 . m L)$
$M_{2}=0.050 \mathrm{~m}$ iris
$\left[1 c_{L} \cdot H C 1\right]:(0.15 m)(50 . m L)=m_{2}(100 . m L)$
$m_{2}=0.075 \mathrm{~m}$ tris-HCl

$$
p H=8.06+\log \left(\frac{0.050 m}{0.075 m}\right)=7.88
$$

${ }^{182}$ Take 100. mL of the previous buffer (0.050 M tris / 0.075 M tris- HCl), and add 5.0 mL of 0.10 M HCl . What is the pH of the mixture?

The HCl should react with the BASIC component of the buffer (fris), changing it to its conjugate acid (tris-H+)

$$
\begin{aligned}
& \text { tris }+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \text { tris- } \mathrm{H}^{+} \\
& (\text {fris }+\mathrm{HCl} \rightarrow \text { tris- } \mathrm{HCl})
\end{aligned}
$$

We need to find out the new concentrations of fris and tris-HCl after reaction!

Note: The volume of the solution is now 105 mL (due to the added volume of the HCl solutic Now, use H-H to find pH:

$$
p H=8.06+\log \left(\frac{0.0428571 m}{0.0761905 m}\right)=7.81
$$

The original pH was 7.88 , so there is a decrease of 0.07 pH units
${ }^{183}$ Compare this 0.07 unit pH change with adding 5.0 mL of 0.10 M HCl to $100 . \mathrm{mL}$ of pure water.

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
&(0.10 \mathrm{~m})(5.0 \mathrm{~mL})=M_{2}(105 \mathrm{~mL}) \\
& M_{2}=0.0047619048 \mathrm{M} \mathrm{HCl}
\end{aligned}
$$

Strong acid, so hydronium concentration equals acid concentration

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0047619048 \mathrm{M}} \\
& \rho \mathrm{H}=2.32
\end{aligned} \begin{aligned}
& \text {... which is change of } 4.68 \mathrm{pH} \text { units from water's } \\
& \text { original pH of } 7.00 \text { ! }
\end{aligned}
$$

