${ }^{153}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5}(p \mathrm{~A}-14, \text { Ebbing } 9 \text { th })
$$

What is the pH ?

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}
\end{aligned}
$$

We need to solve this, but which of these terms are we most interested in?

We want to solve for the HYDROXIDE concentration, since it's closely related to pH.

Species	[Initial $]$	Δ	$[$ Gqülibrivm $]$
NH_{4}^{+}	0	$+X$	x
OH^{-}	0	$+X$	x
NH_{3}	0.100	$-X$	$0.100-x$

Now, plug into the equilibrium expression:

$$
1.8 \times 10^{-5}=\frac{(x)(x)}{(0.100-x)}=\frac{x^{2}}{0.100-x}
$$

$$
\begin{aligned}
1.8 \times 10^{-5} & =\frac{x^{2}}{0.100-x} \quad \begin{array}{l}
\text { This is a QUADRATIC equation. We can solve it with } \\
\text { the quadratic formula, but like the acid example, } \\
\text { we expect that ' } x \text { ' is small compared to } 0.100 \ldots
\end{array} \\
1.8 \times 10^{-5} & =\frac{x^{2}}{0.100} \approx \begin{array}{l}
\text { Be carefully This is the HYDROXID } \\
\text { concentration, not the } \\
\text { hydronium concentration! }
\end{array} \\
x & =0.0013416408=\left[04^{-}\right] \\
P O H & =-\log _{10}(0.0013416408)=2.87
\end{aligned}
$$

If you had solved the problem with the quadratic equation, you would have calculated a pH of 11.13 - there was no difference to two significant figures.

155
Compare pH to the pH of an 0.100 M solution of the strong base NaOH :

$$
\begin{aligned}
& \mathrm{pH}_{1 \mathrm{NH}_{3}}=11.13 \\
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So, } 0.100 \mathrm{M} \mathrm{NaOH} \text { has }\left[\mathrm{OH}^{-}\right]=0,100 \\
& \mathrm{POH}=-\log _{10}(.100)=1.00 \\
& \quad \mathrm{PH}=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)
${ }^{156}$ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO

$$
\begin{aligned}
\mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} & \stackrel{\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-}}{ } \\
\mathrm{Ka}_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}=1,7 \times 10^{-4}
\end{aligned}
$$

Species	[Initial $]$	Δ	$\left[E_{\text {quill. }}\right]$
$\mathrm{H}_{3}{ }^{+}$	0	$+X$	X
CHO_{2}^{-}	0	$+X$	X
HCHO_{2}	0.10	$-X$	$0.10-x$

$$
\begin{aligned}
& 1.7 \times 10^{-4}=\frac{(x)(x)}{(0.10-x)} \\
& 1.7 \times 10^{-4}=\frac{x^{2}}{0.10-x}
\end{aligned}
$$

$$
\begin{array}{r|l}
1,7 \times 10^{-4}=\frac{x^{2}}{0.10-x} & \begin{array}{l}
\left.x=0.0041231056=\mathrm{CH}_{3} 0^{+}\right] \\
\\
\downarrow H=-\log _{10}(0.0041231056)
\end{array} \\
x<0.10 & p H=2.38
\end{array}
$$

DEGREE OF IONIZATION is the fraction of a weak acid or base that ionizes in water.

$$
\left.\frac{\left[\mathrm{CHO}_{2}^{-}\right]}{[\mathrm{HCHO}]_{\text {intial }}}=\frac{\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]}{\left[\mathrm{H}_{\mathrm{HIO}}^{2}\right.}\right]_{\text {initio) }}=\frac{0.0041231056}{0.10}=0.041=0.0 . \mathrm{I}
$$

Sometimes, we express the degree of ionization as a PERCENTAGE - the PERCENT IONIZATION:

$$
\%=D . O . I \times 100 \%=4.1 \% \text { ionized }
$$

Check this in experiment 16A: A more dilute acid solution should have a HIGHER degree of ionization than a more concentrated one. Why?
(Le Chateleir's principle - adding a reactant (water) causes equilibrium shift to the right)

An aqueous solution of 0.25 M trimethylamine has a pH of 11.63 . What's the experimental value of Kb ?

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}
$$

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} N+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{6}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+\prime}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=? ? ?
\end{aligned}
$$

Species	[I nit.]	Δ	$\left[\epsilon_{\text {quail }}\right]$
$\left(\mathrm{LH}_{3}\right)_{3} \mathrm{NH}^{+}$	0	$+x$	x
OH			
$\left(\mathrm{CH}_{3}\right)_{3} N$	0.25	$-x$	$0.25-x$
$=\frac{(x)(x)}{(0.25-x)}$			

$$
\begin{aligned}
& K_{b}=\frac{(x)(x)}{(0.25-x)} \\
& K_{b}=\frac{x^{2}}{0.25-x}
\end{aligned}
$$

If we want to know the value of kb, we need to find some way of determining the value of ' x '.

$$
\begin{aligned}
& K b=\frac{x^{2}}{0.25-x} \quad \begin{array}{l}
\text { We know' ' ' equals the HYOROXIDE concentration. } \\
\text { since we know } \mathrm{PH} \text {. we can calculate what the } \\
\text { hydroxide concentration is. }
\end{array} \\
& \mathrm{PH}=11.63 ; \mathrm{PH}+\mathrm{POH}=14,00 \\
& \mathrm{POH}=2.37
\end{aligned}
$$

Now, just plug 'x' into the expression for Kb:

$$
\begin{aligned}
& K_{b}=\frac{x^{2}}{0.25-x}=\frac{(0.0042657952)^{2}}{0.25-0.0042657952} \\
& K_{b}=7.4 \times 10^{-5}
\end{aligned}
$$

SALTS

- Compounds that result from the reaction of an acid and a base.
- Salts are strong electrolytes (completely dissociate in water) IF SOLUBLE (not all salts dissolve appreciably).
- Most ionic compounds are considered salts (they can be made by some reaction between the appropriate acid and base)
- Salts have acidic and basic properties! The ions that form when salts are dissolved can be acidic, basic, or neutral.
- Salts made from WEAK ACIDS tend to form BASIC solutions
- Salts made from WEAK BASES tend to form ACIDIC solutions

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}: \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-}
$$

Do any of these ions have acidic or basic properties?
Na^{+}: neutral. Not a proton donor or a proton acceptor
$\mathrm{CO}_{3}{ }^{2-}$: in in solution. since it can accept protons to form the weak acid CARBONIC ACID - in solution.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{CO}_{3}^{-2}
$$

ex: $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

For this reaction to occur, HA MUST be stable in water. In other words, a weak acid.
\qquad The anion is a BASE. It can accept a proton from water to form the weak (therefore stable as a molecule!) acid HA

$$
\left.K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]} \right\rvert\, \text {This is the base ionization constant for } A^{-}
$$

Since \bar{A} and HA are a conjugate pair, the ionization constants are related! You will generally not find both

$$
\begin{aligned}
& K_{w}=\left(K_{a, H A}\right)\left(K_{b, A^{-}}\right) \\
& 1.0 \times 10^{-14} \\
& \quad L_{1}=p K_{n}+p K_{b}
\end{aligned}
$$ can be easily converted to the other!

SALT OF A WEAK BASE

ex: $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{aligned}
& \mathrm{BHCl} \longrightarrow \mathrm{BH}^{+}+\mathrm{Cl}^{-} \mathrm{I}^{-} \text {The salt dissociates completely! }
\end{aligned}
$$

$$
\begin{aligned}
& \left.K_{a}=\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]} \right\rvert\, \text {Acid ionization constant for } \mathrm{BH}^{+} \\
& \underset{1,0 \times 10^{-1 / 4}}{k w}=\left(K_{a, B H_{t}}\right)\left(K_{b, B}\right)
\end{aligned}
$$

Find the pH for salt solutions just like you would find pH for any other weak acid or weak base solutions. Only trick is to find out whether the salt is actually acidic or basic!

