${ }^{145}$ Consider a solution of 0.0125 M sodium hydroxide (a strong base):

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Like before, let's assume that all of the sodium hydroxide ionizes, and that all the hydroxide ion in solution comes from the sodium hydroxide.

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{NuOH}]_{\text {nominal }}=0.0125 \mathrm{MOH}^{-}
$$

Wed like to know the pH. First, find pOH :

$$
p O H=-\log _{10}(0.0125)=1.90
$$

pOH is related to pH , very simply.

$$
\begin{aligned}
& p H+p O H=14.00 \\
& P H+1.90=14.00 \\
& p H=12.10
\end{aligned}
$$

Let's find out hydronium ion concentration. We expect it to be very small, and we'd like to know how much water has self-ionized, once we assumed that amount was insignificant.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-12.10}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.9 \times 10^{-13}}
\end{aligned}
$$

... which is indeed MUCH smaller than $0.0125\left(1.25 \times 10^{-2}\right)$
${ }^{146}$ (A) What is the concentration of hydronium ion in an aqueous solution whose pH
is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
A)

$$
\begin{aligned}
& \mathrm{PH}=10 . \mathrm{sO} ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}} \\
& 10^{-1 \mathrm{PH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.50}=3.2 \times 10^{-11} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}}
\end{aligned}
$$

B)

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} } \\
&\left(3.2 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& {\left[\mathrm{OH}^{-}\right] }=3.2 \times 10^{-4} \mathrm{mOH}^{-}
\end{aligned}
$$

C) $\mathrm{NaOH} \rightarrow \mathrm{Na}_{a}^{+}+\mathrm{OH}^{-}$Sodium hydroxide is a STRONG BASE and should li ratio of $\mathrm{NaOH}=\mathrm{OH}^{-}$

$$
\left[\text { NOM }^{\prime}\right]_{\text {numina }}=\frac{3.2 \times 10^{-4} \mathrm{M} \mathrm{NaOH}}{0.00032 \mathrm{~m}}
$$

What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution?
$\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}$

Find the molar concentration (M) of the NaOH solution:

$$
\begin{aligned}
& m=\frac{\text { moiNuoH }}{L \text { solution }}<0 . \operatorname{SodoL} \\
& \text { 2.50gNaOHx } \frac{\text { max NaOs }}{40.00 \mathrm{gWaOH}}=0.0625 \mathrm{~mol} \mathrm{NaOH} \\
& M=\frac{\text { mol NuoH }}{L \text { solution }}=\frac{0.0625 \text { mol } \mathrm{NaOH}}{0.5000 L}=0.125 \mathrm{MNaH}
\end{aligned}
$$

Sodium hydroxide is a STRONG BASE, so we expect it to ionize completely in water. It will control the amount of hydroxide ion present.

$$
\begin{aligned}
& \left.\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{O} t^{2} ; \mathrm{COH}^{2}\right]=\left[\mathrm{NaOH}_{\mathrm{n}}\right]_{\text {nominal }}=0.12 \mathrm{SMOH} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} 0^{+}\right](0.125)=1.0 \times 10^{-14}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{t}\right]=8.0 \times 10^{-14}} \\
& p h=13.10
\end{aligned}
$$

For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& \qquad \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{A}^{-} \\
& \left.\quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\frac{[\mathrm{HA}]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{b} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

