149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of hydrochloric acid solution react with sodium carbonate to produce 125.0 mL of carbon dioxide gas at 0.950 atm and 290.2 K . What is the molar concentration of the acid?

We need to find M of HCl solution:

$$
M_{\text {mic }}=\frac{\text { mol Hel }}{L \text { solution }} \leftarrow 48.90 \mathrm{~mL}=0.04890 \mathrm{~L}
$$

1 - Convert volume carbon dioxide to moles using ideal gas equation.
2 - Convert moles carbon dioxide to moles HCl using chemical equation
3 - Calculate molarity of HCl by dividing moles HCl and volume of HCl solution

$$
\begin{aligned}
& \text { (1) } \left.n=\frac{P V}{R T} \right\rvert\, P=0.950 \text { cuts } \quad R=0.08206 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol} / \mathrm{h}} \\
& n_{\mathrm{CO}_{2}}=\frac{(0.950 \text { cuts })(0.1250 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{L-atm}}{\text { mol/h }}\right)(290.2 \mathrm{~K})}=0.0049866019 \mathrm{~mol} \mathrm{CO} 2 \\
& 2 \operatorname{mol} H C l=\operatorname{mol} \mathrm{CO}_{2} \\
& 0.0049866019 \mathrm{~mol} \mathrm{CO} 2 \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\operatorname{molCO}}=0.0099732038 \mathrm{~mol} \mathrm{hCl} \\
& M_{\text {Hel }}=\frac{\text { mol Hel }}{L_{\text {solution }}}=\frac{0.0099732038 \mathrm{~mol} \mathrm{HCl}}{0.04890 L}=0.204 \mathrm{MHCl}
\end{aligned}
$$

